The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability

Part II

Thu, Aug 17, 2023

Problem 1. Let $\Omega = [0, 1)$, $\mathcal{F} = \mathcal{B}[0, 1)$, and $\mathbb{P} = \lambda$, where λ denotes the Lebesgue measure on [0, 1). For $n \in \mathbb{N}$ and $k \in \{0, 1, \dots, 2^n - 1\}$, we define

$$I_{k,n} = [k2^{-n}, (k+1)2^{-n}), \ \mathcal{F}_n = \sigma(I_{0,n}, I_{1,n}, \dots, I_{2^n-1,n}).$$

In words, \mathcal{F}_n is generated by the *n*-th dyadic partition of [0, 1). For $x \in [0, 1)$, let $k_n(x)$ be the (ordinal) number of the partition element which contains x, i.e., unique number in $\{0, 1, \ldots, 2^n - 1\}$ such that $x \in I_{k_n(x),n}$. For a function $f: [0, 1) \to \mathbb{R}$ we define the process $\{X_n^f\}_{n \in \mathbb{N}_0}$ by

$$X_n^f(x) = 2^n \left(f\left((k_n(x) + 1) 2^{-n} \right) - f\left(k_n(x) 2^{-n} \right) \right), \ x \in [0, 1].$$

- (1) Show that $\{X_n^f\}_{n \in \mathbb{N}_0}$ is a martingale.
- (2) Assume that the function f is Lipschitz, i.e., that there exists K > 0 such that $|f(y) f(x)| \le K|y x|$, for all $x, y \in [0, 1)$. Show that the limit $X^f = \lim_n X^f_n$ exists a.s.
- (3) Show that, for f Lipschitz, X^f has the property that

$$f(y) - f(x) = \int_{x}^{y} X^{f}(\xi) d\xi$$
, for all $0 \le x < y < 1$.

(Note: This problem gives an alternative proof of the fact that Lipschitz functions are absolutely continuous.)

Problem 2. Let $\{(B_t^1, B_t^2)\}_{t \in [0,T]}$ be a two-dimensional Brownian motion. Given $(a_1, a_2, b) \in \mathbb{R}^3$ find the distribution of the random time T given by

$$T = \inf\{t \ge 0 : a_1 B_t^1 + a_2 B_t^2 = b\}$$

(Note: Any of the following will be accepted: pdf, cdf, Laplace transform, characteristic function.)

Problem 3. Let $\{B_t\}_{t\in[0,1]}$ be a Brownian motion on [0,1] and let $\{H_t\}_{t\in[0,1]}$ be a *deterministic* process with $\int_0^1 H_u^2 du < \infty$. Show that the random variable $\int_0^1 H_u dB_u$ is normally distributed.

For extra credit give an example of a non-deterministic, progressive, and *B*-integrable process *H* such that $\int_0^1 H_u \, dB_u$ is normal.