Algebra Preliminary Exam: Part II January 14, 2023

Problem 1

Let p be an odd prime and \mathbb{F}_p denote the field with p elements.

- a) Let F be a finite extension of \mathbb{F}_p . Prove that the product of the non-zero elements of F equals -1.
- b) Let ℓ be a prime. Determine the number of irreducible monic equations of degree ℓ over \mathbb{F}_p .

Problem 2

Let $\alpha = 1 + \sqrt[3]{2} + \sqrt[3]{4}$ and F be the Galois closure of $\mathbb{Q}(\alpha)$.

- a) Determine the minimal polynomial of α over \mathbb{Q}
- b) Determine the Galois group $\operatorname{Gal}(F/\mathbb{Q})$ as a permutation group.
- c) Determine all the intermediate fields of F/\mathbb{Q} .
- d) Determine a primitive generator of F/\mathbb{Q} .

Problem 3

Consider $f(x) = x^4 + 7x + 7$.

- a) Determine the degree of the splitting field of f(x) over \mathbb{F}_3
- b) Let F be the splitting field of f(x) over \mathbb{Q} . Prove that $\operatorname{Gal}(F/\mathbb{Q}) \simeq \mathbf{S}_4$.

Recall: The discriminant of $x^n + ax + b$ is

$$(-1)^{n(n-1)/2}[(1-n)^{n-1}a^n + n^nb^{n-1}].$$