ALGEBRA I QUALIFYING EXAM

JANUARY 13TH, 2023

Each problem is worth 10 points. A passing score is 20/30.
Problem 1.
(a) Let G be a finite group of order n. Let m be an integer coprime to n. Suppose g and h are elements of G with $g^{m}=h^{m}$. Show that $g=h$.
(b) Suppose that G is a finite simple group. Let p be the largest prime dividing $|G|$. Show that G has no proper subgroup H with $[G: H]<p$.

Problem 2. Let $T \in M_{n}(\mathbb{C})$ be an $n \times n$-matrix such that T^{r} equals the identity matrix for some integer $r \geqslant 1$.
Prove that T is conjugate to a diagonal matrix.
Problem 3. Let A be a PID and let $I_{1} \supsetneq I_{2} \supsetneq \ldots$ be a strictly decreasing sequence of ideals. Prove that $\bigcap_{n} I_{n}=(0)$. (You should prove any non-trivial statements about PIDs that you use in this problem.)

