The following three problems are weighted equally. Two complete solutions, or a complete solution and two half-solutions, are required for a passing grade. A correct partial solution is preferrable to a claimed full solution with errors.

Throughout this exam, we say that the random variable ξ is a coin flip if

$$
P(\xi=1)=P(\xi=-1)=\frac{1}{2}
$$

Problem 1

Let ξ_{1}, ξ_{2}, \ldots be independent coin flips. For $\alpha \in(0,1]$ define

$$
X_{n, \alpha}=\frac{1}{n} \sum_{k=1}^{n} k^{\alpha} \xi_{k}
$$

Determine the set of $\alpha \in(0,1]$ for which $X_{n, \alpha} \xrightarrow{P} 0$ as $n \rightarrow \infty$.
(Hint: to show convergence, compute the variance of $X_{n, \alpha}$. To show nonconvergence, apply a suitable Central Limit Theorem to $\sum_{k=\lceil n / 2\rceil}^{n} k^{\alpha} \xi_{k}$, suitably normalized.)

Problem 2

Let X be a random variable with $X \geq 0$ a.s., and suppose that $E(X) \leq 1$ and $E\left(X^{2}\right) \leq 10$. Given this information, for every $t \geq 0$ find the best possible upper bound for $P(X>t)$. (You should show that your bound holds, and that it cannot be improved.)

Problem 3

Let ξ_{1}, ξ_{2}, \ldots be independent coin flips and define

$$
S_{n}=\sum_{i=1}^{n} \xi_{i}
$$

a) Compute $E\left(S_{10} \mid \xi_{1}\right)$.
b) Compute $E\left(S_{10}^{2} \mid \xi_{1}\right)$.
c) Compute $E\left(\xi_{1} \mid S_{10}\right)$.

