Throughout this exam, we say that the random variable ξ is a *coin flip* if

$$P(\xi = 1) = P(\xi = -1) = \frac{1}{2}$$

Problem 1

Let ξ_1, ξ_2, \ldots be independent coin flips. For $\alpha \in (0, 1]$ define

$$X_{n,\alpha} = \frac{1}{n} \sum_{k=1}^{n} k^{\alpha} \xi_k.$$

Determine the set of $\alpha \in (0, 1]$ for which $X_{n,\alpha} \xrightarrow{P} 0$ as $n \to \infty$.

(Hint: to show convergence, compute the variance of $X_{n,\alpha}$. To show nonconvergence, apply a suitable Central Limit Theorem to $\sum_{k=\lceil n/2\rceil}^{n} k^{\alpha} \xi_k$, suitably normalized.)

Problem 2

Let X be a random variable with $X \ge 0$ a.s., and suppose that $E(X) \le 1$ and $E(X^2) \le 10$. Given this information, for every $t \ge 0$ find the best possible upper bound for P(X > t). (You should show that your bound holds, and that it cannot be improved.)

Problem 3

Let ξ_1, ξ_2, \ldots be independent coin flips and define

$$S_n = \sum_{i=1}^n \xi_i.$$

- a) Compute $E(S_{10} | \xi_1)$.
- b) Compute $E(S_{10}^2 | \xi_1)$.
- c) Compute $E(\xi_1 | S_{10})$.