Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

University of Wisconsin-Madison

Irene’s birthday, Austin, Sep 21, 2017

Joint work with Irene M. Gamba (Austin), Leslie M. Smith (Madison)
Joint work with Pierre Germain (Courant), Alexandru D. Ionescu (Princeton)
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

My mom always said life was like a box of chocolates. You never know what you’re gonna get... (Forrest Gump)
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

Having the lucky chance to work with you is one of the nicest pieces of chocolates I have ever got.

HAPPY BIRTHDAY IRENE!
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)
The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

Classical Boltzmann collision operator

\[Q[f](p) = \int\int\int_{\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3} B_{p,p_1,p_2,p_3} [f_3 f_2 - f_1 f] \times \]
\[\times \delta(|p_3|^2 + |p_2|^2 - |p_1|^2 - |p|^2) \delta(p_3 + p_2 - p_1 - p) dp_1 dp_2 dp_3 \]

where \(f = f(t, p), f_1 = f(t, p_1), f_2 = f(t, p_2), f_3 = f(t, p_3) \).

\[p + p_1 = p_2 + p_3, \quad |p|^2 + |p_1|^2 = |p_2|^2 + |p_3|^2. \]

\(p, p_1, p_2, p_3 \in S^2 \left(\frac{p+p_1}{2}, \frac{|p-p_1|}{2} \right) \rightarrow \text{integral on a sphere.} \)
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

Dispersion relation - Particle energy

\[p + p_1 = p_2 + p_3, \quad \omega(p) + \omega(p_1) = \omega(p_2) + \omega(p_3) \]

\[p = p_1 + p_2, \quad \omega(p) = \omega(p_1) + \omega(p_2). \]

Bohm-Pines dispersion law in quantum plasma

\[\omega(p) = \sqrt{\theta_0 + \theta_1 |p|^2 + \theta_2 |p|^4}, \]

\[\rightarrow \text{Collision operators are integrals on complicated manifolds.} \]

\[\rightarrow \text{Resonance Manifold Problem}^{1,2} \]

\[\rightarrow \text{This is one of the questions we would like to answer in our talk.} \]

\[\rightarrow \text{Another question is to replace the nonlinearity } f_2 f_3 - f_1 f \text{ by, for instance, } f_2 f_3 (f_1 + f) - f_1 f (f_2 + f_3). \]

\[^1 \text{Zakharov, Lvov, Falkovich. } \textit{Kolmogorov spectra of turbulence: Wave turbulence.} \textit{ 2012.} \]

\[^2 \text{Nazarenko. } \textit{Wave turbulence.} \textit{ 2011.} \]
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

1. The 4-wave equation (joint work with Germain, Ionescu)

2. The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

3. Conclusion
Defocusing cubic NLS on a torus

\[- i \partial_t v + \frac{1}{2\pi} \Delta v = \epsilon^2 |v|^2 v, \quad v(t = 0) = v_0, \quad x \in \mathbb{T}_L^d.\]

- **Energy cascade phenomenon:** solution transfers energy to higher and higher Fourier modes

 \[\limsup_{t \to \infty} \|v(t)\|_{H^s} = \infty.\]

Partial results: Colliander, Keel, Staffilani, Takaoka, Tao’10, Hani’14, Guardia, Kaloshin’15, Haus, Procesi’15

- **A good introduction:** Terry Tao’s blog “Weak turbulence solutions for the cubic defocusing nonlinear Schrödinger equation”
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

4-wave turbulence kinetic equation

\[v(t, x) = \sum_{p \in \mathbb{Z}^d / L} a_p e^{2\pi i p \cdot x}, \quad \tilde{a}_p(t) = e^{-4\pi |p|^2 t} a_p(t) \]

\[-i \partial_t \tilde{a}_p(t) = \frac{\epsilon^2}{L^4} \sum_{p_1 - p_2 + p_3 = p} \tilde{a}_{p_1}(t) \tilde{a}_{p_2}(t) \tilde{a}_{p_3}(t) \]

Wave turbulence theory\(^1,2,3\): on \(0 \leq t \leq T_{kin} = \frac{L^d}{\epsilon^2}\), \(|\tilde{a}_p|^2\) can be described by \(f(t, p)\) satisfying

\[\partial_t f = C_{4W}[f] \]

\[C_{4W}[f](p) = \int_{\mathbb{R}^{3d}} \delta(p_3 + p_2 - p_1 - p)\delta(|p_3|^2 + |p_2|^2 - |p_1|^2 - |p|^2) \times \]

\[\times [f_3 f_2(f_1 + f) - f_1 f(f_3 + f_2)] dp_1 dp_2 dp_3. \]

4-wave turbulence kinetic equation

- The dispersion relation can be of various types\(^1\)
 \[
 \Psi_t = -\Psi_{xx} + a\Psi_{xxx} - i|\Psi|^2\Psi + 3a|\Psi|^2\Psi_x
 \]
 \[
 C_{4W}[f](p) = \int_{\mathbb{R}^{3d}} \delta(p_3 + p_2 - p_1 - p)\delta(\omega(p_3) + \omega(p_2) - \omega(p_1) - \omega(p))
 \times [f_3 f_2 (f_1 + f) - f_1 f (f_3 + f_2)] dp_1 dp_2 dp_3, \quad \omega(p) = |p|^2 + a|p|^3.
 \]
- Escobedo-Velazquez's local theory\(^2,3\):
 \[
 f(t, p) = g(t, \omega_p), \quad \omega_p = |p|^2, \quad \text{one gets}
 \]
 \[
 \partial_t g = \int_{\mathbb{R}^2_+} K[g_3 g_4 (g_1 + g_2) - g_1 g_2 (g_3 + g_4)] d\omega_3 d\omega_4,
 \]
 where \(g_i = g(t, \omega_i), \omega_2 = \omega_3 + \omega_4 - \omega_1, K = \frac{\min\{\sqrt{\omega_1}, \sqrt{\omega_2}, \sqrt{\omega_3}, \sqrt{\omega_4}\}}{\sqrt{\omega_1}}.\]
- The nonradial, with general dispersion relation case is still open!

\(^3\)Escobedo-Velazquez. *Finite time blow-up and condensation for the bosonic Nordheim equation*. Invent. Math. 2015
The 4-wave equation (joint work with Germain, Ionescu)

\[C_{4w}[f] := \int_{\mathbb{R}^9} \delta(p + p_1 - p_2 - p_3) \delta(\omega + \omega_1 - \omega_2 - \omega_3) \times \]
\[\times [f_1 f_2 (f_3 + f) - ff_1 (f_2 + f_3)] dp_1 dp_2 dp_3 \]
\[= \int_{\mathbb{R}^9} \delta(p + p_1 - p_2 - p_3) \delta(\omega + \omega_1 - \omega_2 - \omega_3) \times \]
\[\times [f_1 f_2 f_3 + ff_2 f_3 - 2ff_1 f_2] dp_1 dp_2 dp_3 \]
\[= T_1[f] + T_2[f] + T_3[f]. \]

We will estimate each operator separately.
Estimating the collision operator in the general case

\[\frac{1}{2\pi} \int_{\mathbb{R}} e^{x\xi} d\xi = \delta_{x=0}, \]

we obtain the following formula, well-known by physicists\(^1\)

\[\delta(p + p_1 - p_2 - p_3)\delta(\omega + \omega_1 - \omega_2 - \omega_3) \]

\[= \frac{1}{(2\pi)^2} \int_{\mathbb{R}^+} \int_{\mathbb{R}^3_x} e^{ix(p+p_1-p_2-p_3)} e^{-is(\omega+\omega_1-\omega_2-\omega_3)} \, dxds \]

\[= \frac{1}{(2\pi)^2} \int_{\mathbb{R}^+} \int_{\mathbb{R}^3_x} e^{ixp-ias\omega} e^{ixp_1-ias\omega_1} e^{-ixp_2+ias\omega_2} e^{-ixp_3+ias\omega_3} \, dxds. \]

\[\rightarrow \int_{\mathbb{R}^9} \delta(p + p_1 - p_2 - p_3)\delta(\omega + \omega_1 - \omega_2 - \omega_3) \times \]

\[\times G(p_1)H(p_2)K(p_3) \, dp_1 \, dp_2 \, dp_3 \]

\[= (2\pi)^2 \mathcal{F} \left[\int_{\mathbb{R}_s} e^{i\omega(D)} \left(e^{i\omega(D)} \hat{G}(x) e^{i\omega(D)} \hat{H}(x) e^{i\omega(D)} \hat{K}(x) \right) \, ds \right]. \]

Strichartz estimate

Lemma

(Germain-Ionescu-MBT’2017) The following standard Strichartz estimate holds under some assumptions on ω

$$\| e^{it\omega(D)} f \|_{L_t^p L_x^q} \leq C \| f \|_{L^2} \quad \text{if} \quad \frac{2}{p} + \frac{d}{q} = \frac{d}{2}, \quad p, q \geq 2.$$

Lemma

(Germain-Ionescu-MBT’2017) For $s \geq 3 - \frac{5}{r}$, and $2 \leq r \leq \infty$.

$$\| T_1[f] \|_{L^r_s} = \left\| \int_{\mathbb{R}^9} \delta(p + p_1 - p_2 - p_3) \delta(\omega + \omega_1 - \omega_2 - \omega_3) \times f_1 f_2 f_3 dp_1 dp_2 dp_3 \right\|_{L^r_s} \leq C \| f \|_{L^3_s}^3.$$
The general case: Technique 2

\[T_2[f] = \int_{\mathbb{R}^9} \delta(p + p_1 - p_2 - p_3)\delta(\omega + \omega_1 - \omega_2 - \omega_3) \times \]
\[\times f_2 f_3 dp_1 dp_2 dp_3 \]
\[= f Q^{gain}[f]. \]

\[Q^{gain}[f] := \int_{\mathbb{R}^9} \delta(p + p_1 - p_2 - p_3)\delta(\omega + \omega_1 - \omega_2 - \omega_3) \times \]
\[\times f_2 f_3 dp_1 dp_2 dp_3. \]
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

The general case: Technique 2

\[I = \int_{\mathbb{R}^{12}} \delta(p + p_1 - p_2 - p_3)\delta(\omega + \omega_1 - \omega_2 - \omega_3) f_2 f_3 f dp dp_1 dp_2 dp_3 \]

By the definition of the Delta function

\[I = \int_{\mathbb{R}^9} \delta(\omega(p) + \omega(p_2 + p_3 - p) - \omega(p_2) - \omega(p_3)) f_2 f_3 f dp dp_2 dp_3 \]

The resonance manifold \(S_{p_2, p_3} \): all of the points \(z \) such that

\[\mathcal{G}(z) := \omega(p_2 + p_3 - z) + \omega(z) - \omega(p_2) - \omega(p_3) = 0, \]

which leads to the following representation of \(I \),

\[I = \int_{\mathbb{R}^6} f_2 f_3 \left(\int_{S_{p_2, p_3}} \frac{f(z)}{|\nabla_z \mathcal{G}(z)|} d\mu(z) \right) dp_2 dp_3. \]
The general case: Technique 2

Averaging operators of the type

\[J(p, p') = \int_{S_{p,p'}} K(z) f(z) d\mu(z), \]

\[\varphi(z) := \omega(p + p' - z) + \omega(z) - \omega(p) - \omega(p') = 0, \]

has been studied before by several authors, under the condition that \(K \) is compactly supported\(^1,2,3\).

\(^3\) Ionescu. *Fourier integral operators on noncompact symmetric spaces of real rank one*. JFA, 2000.
The general case: Technique 2

- Suppose we need to estimate

\[\| J(\cdot, p') \|_{L^1} = \int_{\mathbb{R}^3} \int_{S_{p,p'}} \frac{f(z)}{|\nabla z \mathcal{G}(z)|} d\mu(z) dp \]

\[\leq \left\| \int_{S_{p,p'}} d\mu(z) \right\|_{\infty} \int_{\mathbb{R}^3} \frac{f(z)}{|\nabla z \mathcal{G}(z)|} dp \]

- One of our techniques: the change of variable \(z \rightarrow p \).
Set $p + p_1 = \rho$, then

$$\nabla_z \mathcal{G} = \frac{Z - \rho}{|\rho - Z|} \omega'(|\rho - Z|) + \frac{Z}{|Z|} \omega'(|Z|).$$

In particular, let q be any vector orthogonal to ρ i.e. $\rho \cdot q = 0$. The directional derivative of G in the direction of q, with $z = \alpha \rho + q$, $\alpha \in \mathbb{R}$, satisfies

$$q \cdot \nabla_z \mathcal{G} = |q|^2 \left[\frac{\omega'(|\rho - Z|)}{|\rho - Z|} + \frac{\omega'(|Z|)}{|Z|} \right] > 0,$$

that means, $\mathcal{G}(z)$ is strictly increasing in any direction that is orthogonal to ρ. This proves that the intersection between the surface S_{p,p_1} and the plane

$$\mathcal{P}_\alpha = \left\{ \alpha \rho + q, \rho \cdot q = 0 \right\}$$

is either empty or the circle centered at $\alpha \rho$ and of a finite radius $|q_\alpha|$, for $\alpha \in \mathbb{R}$.

Parametrize S_{p,p_1}
We can parametrize S_{p,p_1} as follows. Fix a vector ρ^\perp be in $P_0 = \{ \rho \cdot q = 0 \}$ and let e_θ be the unit vector in P_0 such that the angle between ρ^\perp and e_θ is θ. We parametrize S_{p,p_1} by

$$\left\{ z = \alpha \rho + q_\alpha = \alpha \rho + |q_\alpha| e_\theta : \theta \in [0, 2\pi], \alpha \in [\alpha_{\text{min}}, \alpha_{\text{max}}] \right\},$$

where $\alpha_{\text{min}}, \alpha_{\text{max}}$ are the smallest and biggest values that α can take.
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

The change of variable z to ρ

Notice that $z = \alpha \rho + q_\alpha$ and we use the standard notation $z = (z^1, z^2, z^3)$, $\rho = (\rho^1, \rho^2, \rho^3)$, $q_\alpha = (q^1_\alpha, q^2_\alpha, q^3_\alpha)$, $p = (p^1, p^2, p^3)$, $p_1 = (p^1_1, p^2_1, p^3_1)$. We compute the derivative of each component of z with respect to each component of p

$$\partial p_i z^i = \partial p_i (\alpha p^i + \alpha p^i_1 + q^i_\alpha) = \partial p_i q^i_\alpha = \partial_{|\rho|} q^i_\alpha \frac{\rho_j}{|\rho|}, i, j \in \{1, 2, 3\}, i \neq j,$$

$$\partial p_i z^i = \partial p_i (\alpha p^i + \alpha p^i_1 + q^i_\alpha) = \alpha + \partial p_i q^i_\alpha = \alpha + \partial_{|\rho|} q^i_\alpha \frac{\rho_i}{|\rho|}, i \in \{1, 2, 3\}.$$

The Jacobian matrix can be then written as

$$\text{Jac} = \begin{bmatrix}
\alpha + \partial_{|\rho|} q^1_\alpha \frac{\rho_1}{|\rho|} & \partial_{|\rho|} q^1_\alpha \frac{\rho_2}{|\rho|} & \partial_{|\rho|} q^1_\alpha \frac{\rho_3}{|\rho|} \\
\partial_{|\rho|} q^2_\alpha \frac{\rho_1}{|\rho|} & \alpha + \partial_{|\rho|} q^2_\alpha \frac{\rho_2}{|\rho|} & \partial_{|\rho|} q^2_\alpha \frac{\rho_3}{|\rho|} \\
\partial_{|\rho|} q^3_\alpha \frac{\rho_1}{|\rho|} & \partial_{|\rho|} q^3_\alpha \frac{\rho_2}{|\rho|} & \alpha + \partial_{|\rho|} q^3_\alpha \frac{\rho_3}{|\rho|}
\end{bmatrix},$$

whose determinant can be computed explicitly

$$|\text{Jac}| = \alpha^3 + \alpha^2 \partial_{|\rho|} q_\alpha \cdot \frac{\rho}{|\rho|}.$$
The change of variable z to ρ

We can therefore do the change of variable z to ρ with the cost $\frac{1}{\alpha^3}$.

Notice that S_{ρ,p_1} is symmetric on S_{ρ,p_1} with respect to z and $\rho - z$. Let us split S_{ρ,p_1} into two surfaces

$$S_{\rho,p_1}^+ := \{ z_\alpha \in S_{\rho,p_1} \mid |z_\alpha| \geq |\rho - z_\alpha| \} ,$$

$$S_{\rho,p_1}^- := \{ z_\alpha \in S_{\rho,p_1} \mid |z_\alpha| < |\rho - z_\alpha| \} ,$$

that lead to

$$S_{\rho,p_1}^+ := \left\{ z_\alpha \in S_{\rho,p_1} \mid \alpha \geq \frac{1}{2} \right\} ,$$

$$S_{\rho,p_1}^- := \left\{ z_\alpha \in S_{\rho,p_1} \mid \alpha < \frac{1}{2} \right\} .$$

We can assume $\alpha \geq \frac{1}{2}$ and $\frac{1}{\alpha^3} \leq 8$.
Estimates on T_2

Lemma

(Germain, Ionescu, MBT’2017) For $r \in [1, \infty]$

$$\| T_2[f]\|_{L^r_s} \leq C\| f\|_{L^r_s}^2 \| f\|_{L^\infty_1}.$$

(3)

for $s > 4 - \frac{3}{r}$.

Theorem

(Germain, Ionescu, MBT’2017) Suppose that the dispersion relation ω is of the general abstract form and satisfies some assumptions. For any initial condition $f_0 \in \mathbb{X} := L^\infty_s \cap L^r_{s_0}$, $(s > 3, r \geq 2, s_0 > 5 - \frac{3}{r}), f_0 \geq 0$, there exists a time interval $[0, T)$ such that the equation has a unique, strong, positive solution f in $C^1([0, T), \mathbb{X})$.
The 3-wave turbulence kinetic equation

\[\partial_t f(t, p) = C_{3W}[f](t, p), \]

\[
C_{3W}[f](p) = \int_{\mathbb{R}^6} \delta(p - p_1 - p_2) \delta(\omega_p - \omega_{p_1} - \omega_{p_2}) \times \\
\times [f(p_2)f(p_1) - f(p)f(p_1) - f(p)f(p_2)] dp_1 dp_2 \\
- 2 \int_{\mathbb{R}^6} \delta(p_2 - p - p_1) \delta(\omega_{p_1} - \omega_p - \omega_{p_2}) \times \\
\times [f(p)f(p_1) - f(p_2)f(p_1) - f(p_2)f(p)] dp_1 dp_2
\]
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

Other dispersive equations

- Water wave equation

\[
\Delta \Phi(t, x, y, z) = 0, \text{ for } z < \zeta(t, x, y), (t, x, y, z) \in \mathbb{R}_+ \times \mathbb{R}^3, \\
\zeta_t - \Phi_z = -\zeta_x \Phi_x - \zeta_y \Phi_y \bigg|_{z=\zeta}, \\
\Phi_t - \alpha(\zeta_{xx} + \zeta_{yy}) = \frac{|\nabla \Phi|^2}{2} \bigg|_{z=\zeta}, \Phi \bigg|_{z=-\infty} = 0,
\]

where \(\Phi(t, x, y, z) \) is the velocity potential, \(\zeta(t, x, y) \) is the deviation of the surface from equilibrium. The \(z \) axis is directed away from the liquid and the pressure is 0.

Fourier analysis\(^1\) for \(\Phi(t, x, y, \zeta(t, x, y)) \) \(\rightarrow \) the 3 wave turbulence kinetic equation

- The primitive equation\(^2\).

Resonance Broadening

Exact resonances do not capture some important physical effects, such as energy transfer to non-propagating wave modes with zero frequency. A natural way to include more physics is to allow near-resonant interactions 1,2 defined as

$$ p = p_1 + p_2, \quad |\omega_p - \omega_{p_1} - \omega_{p_2}| < \theta, $$

where θ accounts for broadening of the resonant surfaces.

One loop approximation

Exact resonance equation for stratified flows in the ocean

\[C_{3w}^{\text{exact}}[f] \sim \int \int_{\mathbb{R}^2} \delta(p - p_1 - p_2) \delta(\omega_p - \omega_{p_1} - \omega_{p_2})(f_1 f_2 - ff_1 - ff_2) dp_1 dp_2 \]

Near resonance equation \(^1,^2,^3\) for stratified flows in the ocean

\[C_{3w}^{\text{broaden}}[f] \sim \int \int_{\mathbb{R}^2} \delta(p - p_1 - p_2) \mathcal{L}_f(\omega_p - \omega_{p_1} - \omega_{p_2})(f_1 f_2 - ff_1 - ff_2) dp_1 dp_2 \]

\[\mathcal{L}_f(\zeta) = \frac{\Gamma_{p,p_1,p_2}}{\zeta^2 + \Gamma_{p,p_1,p_2}^2}, \quad \Gamma_{p,p_1,p_2} = \gamma_p + \gamma_{p_1} + \gamma_{p_2}, \quad \gamma_p = c|p|^2 \int_{\mathbb{R}^3} f(t, p) dp. \]
For any $R^* > 0$, $R_1^* > 1$, and for $N, t > 0$, we introduce S_t to be consisting of functions $f \in L^{1}_{N+3}(\mathbb{R}^d)$ so that

(S1) Positivity of the set S_t: $f \geq 0$;
(S2) Upper bound of the set S_t: $\|f\|_{L^{1}_{N+3}} \leq c_0(t)$;
(S3) Lower bound of the set S_t: $\|f\|_{L^{1}} \geq c_1(t)$;

$$c_0(t) := (2R^*_1 + 1)e^{C^*_1 t}, \quad c_1(t) := \frac{R^* e^{-C^*t}}{2}.$$

Theorem

(Gamba, Smith, MBT’2017) Let $N > 0$, and let $f_0(k) \in S_0$. Then the 3-wave weak turbulence equation, with resonance broadening and initial data $f(0, k) = f_0(k) \geq 0$, $\omega(p) = \sqrt{C_{Coriolis} + |p|^2}$ has a unique strong solution $f(t, k) \in C([0, T); L^{1}_{N}(\mathbb{R}^d)) \cap C^1((0, T); L^{1}_{N}(\mathbb{R}^d))$. Moreover, $f(t, k) \in S_T$ for all $t \in [0, T)$.

1 Alonso, Gamba, Tran. *The Cauchy problem for the quantum Boltzmann equation for bosons at very low temperature.* arXiv:1609.07467
Our results on weak turbulence-quantum Boltzmann

- **Kinetic equations point of view:**
 - Convergence to equilibrium: M. Escobedo, M.-B. Tran
 - Hydrodynamics limits: S. Jin, M.-B. Tran
 - 3-wave equation: R. Alonso, I. M. Gamba, L. M. Smith, M.-B. Tran
 - 4-wave equation: P. Germain, A. Ionescu, M.-B. Tran
 - Positivity of the solutions: T. Nguyen, M.-B. Tran

- **Dispersive equations point of view:**
 - Normal form transformation: A. Soffer, M.-B. Tran
 - Uncertainty principle: G. Ponce, A. Soffer, L. Vega, M.-B. Tran

- **Dynamical systems point of view:**
 - The global attractor conjecture: G. Craciun, M.-B. Tran

- **Physics point of view:**
 - Derivation: L. Reichl, M.-B. Tran
 - Applications in plasma physics: S. Boldyrev, G. Craciun, M.-B. Tran
Some existence and uniqueness results for wave (weak) turbulence kinetic equations

Minh-Binh Tran

The 4-wave equation (joint work with Germain, Ionescu)

The 3-wave turbulence kinetic equation (joint work with Gamba and Smith)

Conclusion

HAPPY BIRTHDAY IRENE!