Fully nonlinear integro-differential equations

From Mwiki

Jump to: navigation, search

Fully nonlinear integro-differential equations are a nonlocal version of fully nonlinear elliptic equations of the form $F(D^2 u, Du, u, x)=0$. The main examples are the integro-differential Bellman equation from optimal control, and the Isaacs equation from stochastic games.

Equations of this type commonly satisfy a comparison principle and have some regularity results.

The general definition of ellipticity provided below does not require a specific form of the equation. However, the main two applications are the two above.


Abstract definition [1][2]

A nonlocal operator is any rule that assigns a value to $Iu(x)$ whenever $u$ is a bounded function in $\mathbb R^n$ that is $C^2$ around the point $x$. The most basic requirement to call $I$ elliptic is that whenever $u-v$ achieves a global nonnegative maximum at the point $x$, then \[ Iu(x) \leq Iv(x).\]

We now proceed to define the concept of uniform ellipticity. Given the richness of variations of nonlocal equations, we provide a flexible definition of uniform elliticity depending an arbitrary family of linear operators.

Given a family of linear integro-differential operators $\mathcal{L}$, we define the extremal operators $M^+_\mathcal{L}$ and $M^-_\mathcal{L}$: \begin{align*} M^+_\mathcal{L} u(x) &= \sup_{L \in \mathcal{L}} \, L u(x) \\ M^-_\mathcal{L} u(x) &= \inf_{L \in \mathcal{L}} \, L u(x) \end{align*}

We define a nonlinear operator $I$ to be uniformly elliptic in a domain $\Omega$ with respect to the class $\mathcal{L}$ if it assigns a continuous function $Iu$ to every function $u \in L^\infty(\R^n) \cap C^2(\Omega)$, and moreover for any two such functions $u$ and $v$: \[M^-_\mathcal{L} [u-v](x)\leq Iu(x) - Iv(x) \leq M^+_\mathcal{L} [u-v] (x), \] for any $x \in \Omega$.

A fully nonlinear elliptic equation is an equation of the form $Iu=0$ in $\Omega$, for some elliptic operator $I$.

Note. If $\mathcal L$ consists of purely second order operators of the form $\mathrm{tr} \, A \cdot D^2 u$ with $\lambda I \leq A \leq \Lambda I$, then $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ denote the usual extremal Pucci operators. It is a folklore statement that then nonlinear operator $I$ elliptic respect to $\mathcal L$ in the sense described above must coincide with a fully nonlinear elliptic operator of the form $Iu = F(D^2u,x)$. However, this proof may have never been written anywhere.
Note. Any uniformly elliptic integro-differential equation with respect to some class $\mathcal L$ satisfies the following $\inf-\sup$ representation \[ Iu(x) = \inf_{v \in C^2 \cap L^\infty} \sup_{L \in \mathcal L} \bigg\{ (Iv(x) - Lv(v)) + Lu(x) \bigg\}.\] Therefore, $I$ coincides with some Isaacs equation for some family of linear operators $L_{ab}$ (the index $a$ ranges over all functions $v$ and the index $b$ over all linear operators $L$). In the case that $I$ is not uniformly elliptic with respect to any given class, an $\inf-\sup$ formula was also obtained when the operator $I$ is Frechet differentiable [3].

Another definition

Another definition which gives a more concrete structure to the equation has been suggested [4]. It is not clear if both definitions are equivalent, but both include the most important examples and are amenable of approximately the same methods.

Given a family of linear integro-differential operators $L_\alpha$ indexed by a parameter $\alpha$ which ranges in an arbitrary set $A$, a fully nonlinear elliptic equation is an equation of the form \[ F(D^2 u, Du, u, x, \{L_\alpha\}_\alpha) = 0 \qquad \text{in } \Omega.\] Where the function $F(X,p,z,x,\{i_\alpha\}_\alpha)$ is monotone increasing with respect to $X$ and $\{i_\alpha\}$ and monotone decreasing with respect to $z$.

Note that the family of linear operators $\{L_\alpha\}$ can range in an arbitrarily large set $A$ (it could even be uncountable).

Note. In several articles [4][5][6], fully nonlinear integro-differential equations of the form $F(D^2 u, Du, u, x, Lu)=f(x)$ are analyzed, where $L$ is one fixed linear integro-differential operator. This is a rigid structure for purely integro-differential equations because such equation (which would not depend on $D^2u$, $Du$ or $u$) would be forced to be linear: $Lu(x) = [F(x,\cdot)^{-1}f(x)]$. On the other hand, the results in these papers apply to the more general definitions of fully nonlinear integro-differential equations as well. The reason for the restriction to one single integro-differential operator instead of a family $\{L_\alpha\}_\alpha$ seems to be taken only for simplicity.
Note. Whenever a general nonlocal operator corresponding to the first definition has an $\inf-\sup$ representation, it also fits the second definition. Any operator in the form of the second definition obviously fits the first definition. Therefore, for all practical purposes, the two definitions are practically equivalent.


The two main examples are the following.

\[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.

The equation appears naturally in problems of stochastic control with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_a$.

\[ \sup_{a \in \mathcal{A}} \ \inf_{b \in \mathcal{B}} \ L_{ab} u(x) = f(x), \] where $L_{ab}$ is some family of linear integro-differential operators with two indices $a \in \mathcal A$ and $b \in \mathcal B$.

The equation appears naturally in zero sum stochastic games with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_{ab}$.


  1. Caffarelli, Luis; Silvestre, Luis (2009), "Regularity theory for fully nonlinear integro-differential equations", Communications on Pure and Applied Mathematics 62 (5): 597–638, doi:10.1002/cpa.20274, ISSN 0010-3640, http://dx.doi.org/10.1002/cpa.20274 
  2. Caffarelli, Luis; Silvestre, Luis, "Regularity results for nonlocal equations by approximation", Archive for Rational Mechanics and Analysis (Berlin, New York: Springer-Verlag): 1–30, ISSN 0003-9527 
  3. Guillen, Nestor; Schwab, Russell W, "Neumann Homogenization via Integro-Differential Operators", arXiv preprint arXiv:1403.1980 
  4. 4.0 4.1 Barles, Guy; Imbert, Cyril (2008), "Second-order elliptic integro-differential equations: viscosity solutions' theory revisited", Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 25 (3): 567–585, doi:10.1016/j.anihpc.2007.02.007, ISSN 0294-1449, http://dx.doi.org/10.1016/j.anihpc.2007.02.007 
  5. Barles, G.; Chasseigne, Emmanuel; Imbert, Cyril (2008), "On the Dirichlet problem for second-order elliptic integro-differential equations", Indiana University Mathematics Journal 57 (1): 213–246, doi:10.1512/iumj.2008.57.3315, ISSN 0022-2518, http://dx.doi.org/10.1512/iumj.2008.57.3315 
  6. Barles, Guy; Chasseigne, Emmanuel; Imbert, Cyril (2011), "Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations", Journal of the European Mathematical Society (JEMS) 13 (1): 1–26, doi:10.4171/JEMS/242, ISSN 1435-9855, http://dx.doi.org/10.4171/JEMS/242 
Personal tools