Bellman equation

From Mwiki

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
Note that any '''convex''' fully nonlinear elliptic PDE of second order $F(D^2u, Du, u, x)$ can be written as a Bellman equation by taking the supremum of all supporting planes of $F$. It is not known whether that such representation holds for integro-differential equations.
Note that any '''convex''' fully nonlinear elliptic PDE of second order $F(D^2u, Du, u, x)$ can be written as a Bellman equation by taking the supremum of all supporting planes of $F$. It is not known whether that such representation holds for integro-differential equations.
 +
 +
[[Category:Fully nonlinear equations]]

Revision as of 06:23, 2 June 2011

The Bellman equation is the equality \[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.

The equation appears naturally in problems of stochastic control with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_a$.

Note that any convex fully nonlinear elliptic PDE of second order $F(D^2u, Du, u, x)$ can be written as a Bellman equation by taking the supremum of all supporting planes of $F$. It is not known whether that such representation holds for integro-differential equations.

Personal tools