# Bellman equation

### From Mwiki

(Difference between revisions)

Line 10: | Line 10: | ||

[[Category:Fully nonlinear equations]] | [[Category:Fully nonlinear equations]] | ||

+ | |||

+ | |||

+ | {{stub}} |

## Revision as of 02:35, 6 February 2012

The Bellman equation is the equality \[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.

The equation appears naturally in problems of stochastic control with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_a$.

Note that any **convex** fully nonlinear elliptic PDE of second order $F(D^2u, Du, u, x)$ can be written as a Bellman equation by taking the supremum of all supporting planes of $F$. It is not known whether that such representation holds for integro-differential equations.

This article is a **stub**. You can help this nonlocal wiki by expanding it.