Bellman equation

From Mwiki

Revision as of 00:26, 8 February 2012 by Luis (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The Bellman equation is the equality \[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.

The equation appears naturally in problems of stochastic control with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_a$. Under some conditions on the operators $L_a$, the solution is always smooth due to the nonlocal version of Evans-Krylov theorem

Note that any convex fully nonlinear elliptic PDE of second order $F(D^2u, Du, u, x)$ can be written as a Bellman equation by taking the supremum of all supporting planes of $F$. It is not fully understood whether that such representation holds for integro-differential equations.

This article is a stub. You can help this nonlocal wiki by expanding it.

Personal tools