Bellman equation

From nonlocal pde
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Bellman equation is the equality \[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.

The equation appears naturally in problems of stochastic control with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_a$. Under some conditions on the operators $L_a$, the solution is always smooth due to the nonlocal version of Evans-Krylov theorem

Note that any convex fully nonlinear elliptic PDE of second order $F(D^2u, Du, u, x)$ can be written as a Bellman equation by taking the supremum of all supporting planes of $F$. It is not fully understood whether that such representation holds for integro-differential equations.


This article is a stub. You can help this nonlocal wiki by expanding it.