Bernstein function

From nonlocal pde
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A continuous function $f : [0, \infty) \to [0, \infty)$ is said to be a Bernstein function if $(-1)^k f^{(k)}(x) \le 0$ for $x > 0$ and $k = 1, 2, ...$[1]

Relation to complete monotonicity

Clearly, $f$ is a Bernstein function if and only if it is nonnegative, and $f'$ is a completely monotone function.

Representation

By Bernstein's theorem, $f$ is a Bernstein function if and only if: \[ f(z) = a z + b + \int_{(0, \infty)} (1 - e^{-t z}) \mu(\mathrm d t) \] for some $a, b \ge 0$ and a Radon measure $\mu$ such that $\int_{(0, \infty)} \min(1, t) \mu(\mathrm d t) < \infty$.

Examples

The following functions are Bernstein functions of $z$:

  • $z^s$ for $s \in [0, 1]$,
  • $\log(1 + z)$,
  • $\frac{z}{r + z}$ for $r > 0$,
  • $1 - e^{-t z}$ for $t > 0$.

All but the last one are in fact complete Bernstein functions.

Properties

If $f_1, f_2$ are Bernstein functions and $c > 0$, then $c f_1$, $f_1 + f_2$ and $f_1 \circ f_2$ are Bernstein functions.

Subordination

Bernstein functions are closely related to Bochner's subordination of semigroups. Namely, for a nonnegative definite self-adjoint operator $L$ and a Bernstein function $f$, the operator $-f(L)$ (defined by means of spectral theory) is the generator of some semigroup of operators which is subordinate to the semigroup $e^{-t L}$ generated by $-L$. Conversely, every generator of a semigroup subordinate to $e^{-t L}$ is equal to $-f(L)$ for some Bernstein function $f$.

Bernstein functions of the Laplacian

Bernstein functions of the Laplacian are translation invariant non-local operators in $\R^n$. More precisely, $A = f(-\Delta)$ for a Bernstein function $f$ if and only if \[ -A u(x) = a \Delta u(x) + b u(x) + \int_{\R^n} (u(x + z) - u(x) - z \cdot \nabla u(x) \mathbf{1}_{|z| < 1}) k(z) \mathrm d z \] for some $a, b \ge 0$ and $k(z)$ of the form \begin{align*} k(z) &= \int_0^\infty (4 \pi t)^{-n/2} e^{-|z|^2 / (4 t)} \mu(\mathrm d t) . \end{align*}

References

  1. Schilling, R.; Song, R.; Vondraček, Z. (2010), Bernstein functions. Theory and Applications, Studies in Mathematics, 37, de Gruyter, Berlin, doi:10.1515/9783110215311, http://dx.doi.org/10.1515/9783110215311 

This article is a stub. You can help this nonlocal wiki by expanding it.