Boltzmann equation

From Mwiki

(Difference between revisions)
Jump to: navigation, search
m (Collision Invariants)
Line 39: Line 39:
\text{(the first and the third ones are real valued functions, the third one vector valued)}
\text{(the first and third ones are real valued functions, the third one is vector valued)}

Revision as of 00:54, 22 November 2012

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by

\begin{equation*} \int_A f(x,v,t)dxdy \end{equation*}

then if $f_0$ denotes the initial density, the function $f(x,v,t)$ solves the Cauchy problem

\begin{equation}\tag{1} \left \{ \begin{array}{rll} \partial_t f + v \cdot \nabla_x f & = Q(f,f) & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+\\ f & = f_0 & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \{ 0 \} \end{array}\right. \end{equation}

where $Q(f,f)$ is the Boltzmann collision operator, a non-local operator given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_* \end{equation*}

here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Collision Invariants

The Cauchy problem (1) enjoy several conservation laws, which in the Boltzmann literature are known as collision invariants. Take $\phi(v)$ to be any of the following functions

\begin{equation*} \phi(v) = 1, \;\;v,\;\; \tfrac{|v|^2}{2} \end{equation*} \begin{equation*} \text{(the first and third ones are real valued functions, the third one is vector valued)} \end{equation*}

and let $f(x,v,t)$ be any classical solution to (1), then we have

\begin{equation*} \frac{d}{dt}\int_{\mathbb{R}^d\times \mathbb{R}^d} f(x,v,t) \phi(v)\;dx\;dv = 0 \end{equation*}

according to what $\phi$ we pick this equation corresponds to conservation of mass, conservation momentum or conservation of energy.

The Landau Equation

For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,

\begin{equation*} f_t + x\cdot \nabla_y f = Q_{L}(f,f) \end{equation*}

where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as

\begin{equation*} Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2 \end{equation*}

where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$.

Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument).

Personal tools