Frequently asked questions and Lecture notes on nonlocal equations: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>Luis
(Created page with "=Lecture 1= ==Definitions: linear equations== The first lecture serves as an overview of the subject and to familiarize ourselves with the type of equations under study. The a...")
 
Line 1: Line 1:
==Registration and content creation==
=Lecture 1=


===How do I register as a user?===
==Definitions: linear equations==
In order to be able to create or edit the pages, you must be a registered user. We welcome all users to register. Unfortunately we have not yet figured out how to set a public registration page and at the same time avoid spammers. So right now the only way to register is by sending an email to one of the administrators: [[User:Nestor| Nestor Guillen]], [[User:RayAYag |Ray Yang]], [[User:Russell|Russell Schwab]] or [[User:Luis|Luis Silvestre]].


===How do I edit a page?===
The first lecture serves as an overview of the subject and to familiarize ourselves with the type of equations under study.
There is an edit button on the top that lets you edit each page. You only see it if you are a registered user.


===How do I create a new page?===
The aim of the course is to see some regularity results for elliptic equations. Most of these results can be generalized to parabolic equations as well. However, this generalization presents extra difficulties that involve nontrivial ideas.
Every time a non existent page is referenced, the link appears red. If you click the red link, you will edit the new page. You need to be a registered user to perform this action.


===Where can I learn how to use a wiki?===
The prime example of an elliptic equation is the Laplace equation.
Consult the [http://meta.wikimedia.org/wiki/Help:Contents User's Guide] for information on using the wiki software.
\[ \Delta u(x) = 0 \text{ in } \Omega.\]


The [http://wiki.math.toronto.edu/DispersiveWiki/index.php/Help:Editing_FAQ dispersive wiki] has a good FAQ section which may be worth reading first. Everything there applies here as well except their policy on bibliographical references.
Elliptic equations are those which have similar properties as the Laplace equation. This is a vague definition.


===How do I write a bibliographical reference?===
The class of fully nonlinear elliptic equations of second order have the form
You can use the website http://math.uchicago.edu/~luis/bib.html to generate the references from a BibTeX entry.
\[ F(D^2u, Du, u, x)=0 \text{ in } \Omega.\]
for a function $F$ such that
\[ \frac{\partial F}{\partial M_{ij}} > 0 \text{ and } \frac{\partial F}{\partial u} \leq 0.\]


The website http://zeteo.info/ used to provide this service as well but seems to be down.
These are the minimal monotonicity conditions for which you can expect a [[comparison principle]] to hold. The appropriate notion of weak solution, [[viscosity solutions]], is based on this monotonicity.


Look at the pages that are already created as an example of how to make the list of bibliography.
What is the Laplacian? The most natural (coordinate independent) definition may be
\[ \Delta u(x) = \lim_{r \to 0} \frac c {r^{n+2}} \int_{B_r} u(x+y)-u(x) dy.\]


===Are there any rules on what we can write?===
A simple (although rather uninteresting) example of a nonlocal equation would be the following non infinitesimal version of the Laplace equation
\[ \frac c {r^{n+2}} \int_{B_r} u(x+y)-u(x) dy = 0 \text{ for all } x \in \Omega.\]


These are the guidelines:
The equation tells us that the value $u(x)$ equals the average of $u$ in the ball $B_r(x)$. A more general integral equation is a ''weighted'' version of the above.
\[ \int_{\R^n} (u(x+y)-u(x)) K(y) dy = 0 \text{ for all } x \in \Omega.\]
where $K:\R^n \to \R$ is a non negative kernel.


# Do not write anything offensive or derogative.
The equations show that $u(x)$ is a weighted average of the values of $u$ in the neighborhood of $x$. This is true in some sense for all elliptic equations, but it is most apparent for integro-differential ones.
# Avoid using words like ''outstanding'', ''remarkable'', ''groundbreaking'' or ''tour de force'' when describing a result.
# If you think that an article is a triviality or is wrong, it is better not to include it in the citations.


Making a contribution to the wiki is fairly simple and it can take an arbitrarily small amount of time. Most of the articles are currently not perfect. You can add a paragraph here and there if you have little time. Or you can add a new article which just states a result and hope that someone will pick up the rest.
For the Dirichlet problem, the boundary values have to be prescribed in the whole complement of the domain.
\begin{align*}
\int_{\R^n} (u(x+y)-u(x)) K(y) dy &= 0 \text{ for all } x \in \Omega, \\
u(x) &= g(x) \text{ for all } x \notin \Omega.
\end{align*}


When writing an article, also keep the following priorities in mind.
These type of equations have a natural motivation from probability, as we will see below.
# It has to be '''easy to read'''. This is the top priority.
# It should be clear what is proved and what is not. But see comment below.
# Avoid too much technicalities. If the assumptions of a general result are too complicated, it is ok to just list the major examples.
# Give references to the papers where theorems are proved.
# Explain the ideas of the proofs when appropriate.
# If a result is a nonlocal version of a classical theorem, mention it.


===Would a user registration ever be revoked?===
==Probabilistic derivation==


Most likely no. Although it could happen if it is used to spam or if one of the guidelines above is grossly disobeyed.
Let us start by an overview on how to derive the Laplace equation from Brownian motion.


===Ok. I registered and want to contribute. What can I do?===
Let $B_t^x$ be Brownian motion starting at the point $x$ and $\tau$ be the first time it hits the boundary $\partial \Omega$. If we call $u(x) = \mathbb E[g(B_\tau^x)]$ for some prescribed function $g: \partial \Omega \to \R$, then $u$ will solve the classical Laplace equation
\begin{align*}
\Delta u(x) &= 0 \text{ in } \Omega,\\
u(x) &= g(x) \text{ on } \partial \Omega.
\end{align*}


Right now, in [[Mwiki:Current events|Current Events]] there is a '''to do''' list. Click on the links and edit the pages. The red links denote that there is a page needed that was not even started.
A variation would be to consider diffusions other than Brownian motion. If $X^x_t$ is the stochastic process given by the SDE: $X_0^x = x$ and $dX_t^x = \sigma(X) dB$, and we define as before $u(x) = \mathbb E[g(X_\tau^x)]$, then $u$ will solve
\begin{align*}
a_{ij}(x) \partial_{ij} u(x) &= 0 \text{ in } \Omega,\\
u(x) &= g(x) \text{ on } \partial \Omega.
\end{align*}
where $a_{ij}(x) = \sigma^*(x) \sigma(x)$ is a non negative definite matrix for each point $x$.


The organization of the wiki is not fully established. We may need some extra index pages or categories.
Nonlinear equations arise from [[stochastic control]] problems. Say that we can choose the coefficients $a_{ij}(x)$ from a family of possible matrices $\{a_{ij}^\alpha\}$ indexed by a parameter $\alpha \in A$. For every point $x$, we can choose a different $a_{ij}(x)$ and our objective is to make $u(x)$ as large as possible. The maximum possible value of $u(x)$ will satisfy the equation
\begin{align*}
\sup_{\alpha} a_{ij}^\alpha \partial_{ij} u &= 0  \text{ in } \Omega,\\
u(x) &= g(x) \text{ on } \partial \Omega.
\end{align*}
<div style="background:#EEEEEE;">
'''Sketch of the proof.'''
If $v$ is any solution to
\begin{align*}
a_{ij}(x) \partial_{ij} v(x) &= 0 \text{ in } \Omega,\\
v(x) &= g(x) \text{ on } \partial \Omega.
\end{align*}
with $a_{ij}(x) \in \{a_{ij}^\alpha : \alpha \in A\}$, then from the equation that $u$ solves, we have
\[ a_{ij}(x) \partial_{ij} u(x) \leq 0 \text{ in } \Omega. \]
Therefore $u \geq v$ in $\Omega$ by the comparison principle for linear elliptic PDE.
</div>


There are several pages already. But the wiki is still in a very premature state. Most pages need some more work. The idea of having a wiki is that no version of a page will ever be a final version. However, right now they make that very apparent.
Integro-differential equations are derived from discontinuous stochastic processes: [[Levy processes]] with jumps.  


if you don't know how to start, you can use the pages that are already written as a sample.
Let $X_t^x$ be a pure jump Levy process starting at $x$. Now $\tau$ is the first exit time from $\Omega$. The point $X_\tau$ may be anywhere outside of $\Omega$ since $X_t$ jumps. The jumps take place at random times determined by a Poisson process. The jumps in any direction $y \in A$, for some set $A \subset \R^n$ follow a Poisson process with intensity
\[ \int_A K(y) dy. \]
The kernel $K$ represents then the frequency of jumps in each direction. This type of processes are well understood and studied in the probability community.  


The small jumps may happen more often than large one. In fact, small jumps may happen infinitely often and still have a well defined stochastic process. This translates in kernels $K$ with a singularity at the origin. The exact assumption one has to make is
\[ \int_{\R^n} K(y) (1 \wedge |y|^2) dy , +\infty.\]
The generator operator of the [[Levy process]] is
\[ Lu(x) = \int_{\R^n} (u(x+y) - u(x) - y \cdot Du(x) \chi_{B_1}(y)) K(y) dy. \]


== About the philosophy of the site ==
We may assume that $K(y)=K(-y)$ in order to simplify the expression. This assumption is not essential, but it makes the computations more compact. This way we can write
\begin{align*}
Lu(x) &= PV \int_{\R^n} (u(x+y) - u(x)) K(y) dy, \text{ or }
&= \int_{\R^n} (u(x+y) + u(x-y) - 2u(x)) K(y) dy.
\end{align*}


=== Who wrote all this? ===
An optimal control problem for jump processes leads to the integro-differntial [[Bellman equation]]
The users of the wiki. Several people.
\[ Iu(x) := \sup_{\alpha} \int_{\R^n}(u(x+y)-u(x)) K^\alpha(y) dy = 0 \text{ in } \Omega.\]


=== Whom do the pages belong to? ===
Another possibility is to consider a problem with two parameters, which are controlled by two competitive players. This is the integro-differential [[Isaacs equation]].
Nobody.
\[ Iu(x) := \inf_\beta \ \sup_{\alpha} \int_{\R^n}(u(x+y)-u(x)) K^{\alpha\beta}(y) dy = 0 \text{ in } \Omega.\]


=== What if I disagree with something that the wiki says? ===
Other contexts in which integral equations arise are the following:
You are free to edit its content. If you do not, we will be offended with you.
* Population dynamics.
* [[Kinetic models]]. See the work of [http://www2.math.umd.edu/~mellet/ | Antoine Mellet].
* [[Nonlocal electrostatics]].
* [[Nonlocal image processing]].
* Fluid mechanics. Mostly toy problems like the [[surface quasi-geostrophic equation]] or [[active scalar equations]].


=== Isn't every wiki doomed to fail? ===
==Uniform ellipticity==
There are other scientific wiki projects online which can serve as examples: the [http://wiki.math.toronto.edu/DispersiveWiki/index.php/Main_Page dispersive wiki], the [http://www.wikiwaves.org/index.php/Main_Page water wave wiki] and also two quantum physics wikis called [http://qwiki.stanford.edu/index.php/Main_Page Qwiki] and [http://www.quantiki.org/wiki/Main_Page Quantiki].
Regularity result require stronger monotonicity assumptions. For fully nonlinear elliptic equations of second order F(D^2u)=0, uniform ellipticity is defined as that there exist two constants $\Lambda \geq \lambda > 0$ such that
\[ \lambda I \leq \frac{\partial F}{\partial M_{ij}}(M) \leq \Lambda I.\]


The success of a wiki page depends on the contributions made by the users. The current experience with scientific wikis shows a questionable level of success. On the other hand, there are non-scientific wikis which are tremendously successful, for example: the [http://wikitravel.org/ travel guide wiki], the [http://harrypotter.wikia.com/wiki/Main_Page Harry Potter wiki], the [http://recipes.wikia.com/wiki/Recipes_Wiki recipes wiki], the [http://starwars.wikia.com/wiki/Main_Page Star Wars wiki], the [http://www.miwiki.net/ Monkey island wiki], the [http://baseball.wikia.com/ Baseball wiki] or the [http://www.mariowiki.com/ Super Mario wiki], among many others.
'''Big Theorems''':
* [[Krylov-Safonov]] (1981): Solutions to fully nonlinear uniformly elliptic equations are $C^{1,\alpha}$ for some $\alpha>0$.
* [[Evans-Krylov]] (1983): Solutions to convex fully nonlinear uniformly elliptic equations are $C^{2,\alpha}$ for some $\alpha>0$.


It would be interesting to understand this distinction of success between the non-scientific wikis and the scientific ones. Number of users is probably not the decisive factor. The contributions per user tend to be much lower in scientific wikis.
At the end of this course, we should be able to understand the proof of these two theorem and their generalization to nonlocal equations.


=== Why should I spend time writing on this wiki? ===
We first need to understand what ellipticity means in an integro-differential equation. The prime example will be the [[fractional Laplacian]]. For $s \in (0,2)$, define
If you are a mathematician who has done some research in the area, you definitely want people to know about your results. If you write an easy to read reference in this wiki, that would help more people know about your work and how it is related with other results in the area. It is good manners not to overplay the importance of your own results. The appropriate thing to do is to write about all the related results by other people as much as you write about yours. Also remember to follow the rules above in the [[#Are there any rules on what we can write?|writing guidelines]].
\[ -(-\Delta)^{s/2} u(x) = \int_{\R^n} (u(x+y)-u(x)) \frac{c_{n,s}}{|y|^{n+s}} dy.\]


If you are a student learning the subject, writing in this wiki may help you understand the topics better (especially if someone comes after you to correct you). Moreover, if you are learning the subject, you probably appreciate the existence of this wiki more than others and are willing to contribute back.
This is an integro-differential operator with a kernel which is radially symmetric, homogeneous, and singular at the origin.


There is an interesting video about open science here [http://www.youtube.com/watch?v=DnWocYKqvhw]
A natural ellipticity condition for [[linear integro-differential operators]] would be to impose that the kernel is comparable to that of the fractional Laplacian. The condition could be
\[ c_{s,n} \frac \lambda {|y|^{n+s}} \leq K(y) \leq c_{s,n} \frac \Lambda {|y|^{n+s}}, \text{ plus } K(y)=K(-y).\]
But other conditions are possible.
 
Uniform ellipticity is linked to [[extremal operators]]. The classical Pucci maximal operators are the extremal of all uniformly elliptic operators which vanish at zero.
\begin{align*}
M^+(D^2 u) &= \sup_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij} \partial_{ij} u(x) = \Lambda tr(D^2u)^+ - \lambda tr(D^2u)^+,\\
M^-(D^2 u) &= \inf_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij} \partial_{ij} u(x) = \lambda tr(D^2u)^+ - \Lambda tr(D^2u)^+.\\
\end{align*}
A fully nonlinear equation $F(D^2u)=0$ is uniformly elliptic if and only if for any two symmetric matrices $X$ and $Y$,
\[M^-(X-Y) \leq F(X) - F(Y) \leq M^+(X-Y).\]
 
Given any family of kernels $\mathcal L$, we define
\begin{align*}
M_{\mathcal L}^+ u(x) &= \sup_{K \in \mathcal L} \int (u(x+y)-u(x)) K(y) dy, \\
M_{\mathcal L}^- u(x) &= \inf_{K \in \mathcal L} \int (u(x+y)-u(x)) K(y) dy.
\end{align*}
Thus, for a nonlocal operator $I$ (which is a black box that maps $C^2$ functions into continuous functions), we can say if is [[uniformly elliptic]] if for any two $C^2$ functions $u$ and $v$,
\[ M_{\mathcal L}^- (u-v)(x) \leq Iu(x) - Iv(x) \leq M_{\mathcal L}^+ (u-v)(x).\]
 
The first choice of $\mathcal L$ would be the one described above
\[ \mathcal L = \left\{ K :  c_{s,n} \frac \lambda {|y|^{n+s}} \leq K(y) \leq c_{s,n} \frac \Lambda {|y|^{n+s}}, \text{ plus } K(y)=K(-y) \right\}.\]
 
In this case, the maximal operators take a particularly simple form
 
\begin{align*}
M_{\mathcal L}^+ u(x) &= \frac{c_{n,s}}2 \int_{\R^n} \frac{\Lambda (u(x+y)+u(x-y)-2u(x))^+ - \lambda (u(x+y)+u(x-y)-2u(x))^-}{|y|^{n+s}} dy, \\
M_{\mathcal L}^- u(x) &= \frac{c_{n,s}}2 \int_{\R^n} \frac{\lambda (u(x+y)+u(x-y)-2u(x))^+ - \Lambda (u(x+y)+u(x-y)-2u(x))^-}{|y|^{n+s}} dy.
\end{align*}
 
For other choices of $\mathcal L$, the operators $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ may not have an explicit expression.
 
= Lecture 2 =

Revision as of 15:18, 7 May 2012

Lecture 1

Definitions: linear equations

The first lecture serves as an overview of the subject and to familiarize ourselves with the type of equations under study.

The aim of the course is to see some regularity results for elliptic equations. Most of these results can be generalized to parabolic equations as well. However, this generalization presents extra difficulties that involve nontrivial ideas.

The prime example of an elliptic equation is the Laplace equation. \[ \Delta u(x) = 0 \text{ in } \Omega.\]

Elliptic equations are those which have similar properties as the Laplace equation. This is a vague definition.

The class of fully nonlinear elliptic equations of second order have the form \[ F(D^2u, Du, u, x)=0 \text{ in } \Omega.\] for a function $F$ such that \[ \frac{\partial F}{\partial M_{ij}} > 0 \text{ and } \frac{\partial F}{\partial u} \leq 0.\]

These are the minimal monotonicity conditions for which you can expect a comparison principle to hold. The appropriate notion of weak solution, viscosity solutions, is based on this monotonicity.

What is the Laplacian? The most natural (coordinate independent) definition may be \[ \Delta u(x) = \lim_{r \to 0} \frac c {r^{n+2}} \int_{B_r} u(x+y)-u(x) dy.\]

A simple (although rather uninteresting) example of a nonlocal equation would be the following non infinitesimal version of the Laplace equation \[ \frac c {r^{n+2}} \int_{B_r} u(x+y)-u(x) dy = 0 \text{ for all } x \in \Omega.\]

The equation tells us that the value $u(x)$ equals the average of $u$ in the ball $B_r(x)$. A more general integral equation is a weighted version of the above. \[ \int_{\R^n} (u(x+y)-u(x)) K(y) dy = 0 \text{ for all } x \in \Omega.\] where $K:\R^n \to \R$ is a non negative kernel.

The equations show that $u(x)$ is a weighted average of the values of $u$ in the neighborhood of $x$. This is true in some sense for all elliptic equations, but it is most apparent for integro-differential ones.

For the Dirichlet problem, the boundary values have to be prescribed in the whole complement of the domain. \begin{align*} \int_{\R^n} (u(x+y)-u(x)) K(y) dy &= 0 \text{ for all } x \in \Omega, \\ u(x) &= g(x) \text{ for all } x \notin \Omega. \end{align*}

These type of equations have a natural motivation from probability, as we will see below.

Probabilistic derivation

Let us start by an overview on how to derive the Laplace equation from Brownian motion.

Let $B_t^x$ be Brownian motion starting at the point $x$ and $\tau$ be the first time it hits the boundary $\partial \Omega$. If we call $u(x) = \mathbb E[g(B_\tau^x)]$ for some prescribed function $g: \partial \Omega \to \R$, then $u$ will solve the classical Laplace equation \begin{align*} \Delta u(x) &= 0 \text{ in } \Omega,\\ u(x) &= g(x) \text{ on } \partial \Omega. \end{align*}

A variation would be to consider diffusions other than Brownian motion. If $X^x_t$ is the stochastic process given by the SDE: $X_0^x = x$ and $dX_t^x = \sigma(X) dB$, and we define as before $u(x) = \mathbb E[g(X_\tau^x)]$, then $u$ will solve \begin{align*} a_{ij}(x) \partial_{ij} u(x) &= 0 \text{ in } \Omega,\\ u(x) &= g(x) \text{ on } \partial \Omega. \end{align*} where $a_{ij}(x) = \sigma^*(x) \sigma(x)$ is a non negative definite matrix for each point $x$.

Nonlinear equations arise from stochastic control problems. Say that we can choose the coefficients $a_{ij}(x)$ from a family of possible matrices $\{a_{ij}^\alpha\}$ indexed by a parameter $\alpha \in A$. For every point $x$, we can choose a different $a_{ij}(x)$ and our objective is to make $u(x)$ as large as possible. The maximum possible value of $u(x)$ will satisfy the equation \begin{align*} \sup_{\alpha} a_{ij}^\alpha \partial_{ij} u &= 0 \text{ in } \Omega,\\ u(x) &= g(x) \text{ on } \partial \Omega. \end{align*}

Sketch of the proof. If $v$ is any solution to \begin{align*} a_{ij}(x) \partial_{ij} v(x) &= 0 \text{ in } \Omega,\\ v(x) &= g(x) \text{ on } \partial \Omega. \end{align*} with $a_{ij}(x) \in \{a_{ij}^\alpha : \alpha \in A\}$, then from the equation that $u$ solves, we have \[ a_{ij}(x) \partial_{ij} u(x) \leq 0 \text{ in } \Omega. \] Therefore $u \geq v$ in $\Omega$ by the comparison principle for linear elliptic PDE.

Integro-differential equations are derived from discontinuous stochastic processes: Levy processes with jumps.

Let $X_t^x$ be a pure jump Levy process starting at $x$. Now $\tau$ is the first exit time from $\Omega$. The point $X_\tau$ may be anywhere outside of $\Omega$ since $X_t$ jumps. The jumps take place at random times determined by a Poisson process. The jumps in any direction $y \in A$, for some set $A \subset \R^n$ follow a Poisson process with intensity \[ \int_A K(y) dy. \] The kernel $K$ represents then the frequency of jumps in each direction. This type of processes are well understood and studied in the probability community.

The small jumps may happen more often than large one. In fact, small jumps may happen infinitely often and still have a well defined stochastic process. This translates in kernels $K$ with a singularity at the origin. The exact assumption one has to make is \[ \int_{\R^n} K(y) (1 \wedge |y|^2) dy , +\infty.\] The generator operator of the Levy process is \[ Lu(x) = \int_{\R^n} (u(x+y) - u(x) - y \cdot Du(x) \chi_{B_1}(y)) K(y) dy. \]

We may assume that $K(y)=K(-y)$ in order to simplify the expression. This assumption is not essential, but it makes the computations more compact. This way we can write \begin{align*} Lu(x) &= PV \int_{\R^n} (u(x+y) - u(x)) K(y) dy, \text{ or } &= \int_{\R^n} (u(x+y) + u(x-y) - 2u(x)) K(y) dy. \end{align*}

An optimal control problem for jump processes leads to the integro-differntial Bellman equation \[ Iu(x) := \sup_{\alpha} \int_{\R^n}(u(x+y)-u(x)) K^\alpha(y) dy = 0 \text{ in } \Omega.\]

Another possibility is to consider a problem with two parameters, which are controlled by two competitive players. This is the integro-differential Isaacs equation. \[ Iu(x) := \inf_\beta \ \sup_{\alpha} \int_{\R^n}(u(x+y)-u(x)) K^{\alpha\beta}(y) dy = 0 \text{ in } \Omega.\]

Other contexts in which integral equations arise are the following:

Uniform ellipticity

Regularity result require stronger monotonicity assumptions. For fully nonlinear elliptic equations of second order F(D^2u)=0, uniform ellipticity is defined as that there exist two constants $\Lambda \geq \lambda > 0$ such that \[ \lambda I \leq \frac{\partial F}{\partial M_{ij}}(M) \leq \Lambda I.\]

Big Theorems:

  • Krylov-Safonov (1981): Solutions to fully nonlinear uniformly elliptic equations are $C^{1,\alpha}$ for some $\alpha>0$.
  • Evans-Krylov (1983): Solutions to convex fully nonlinear uniformly elliptic equations are $C^{2,\alpha}$ for some $\alpha>0$.

At the end of this course, we should be able to understand the proof of these two theorem and their generalization to nonlocal equations.

We first need to understand what ellipticity means in an integro-differential equation. The prime example will be the fractional Laplacian. For $s \in (0,2)$, define \[ -(-\Delta)^{s/2} u(x) = \int_{\R^n} (u(x+y)-u(x)) \frac{c_{n,s}}{|y|^{n+s}} dy.\]

This is an integro-differential operator with a kernel which is radially symmetric, homogeneous, and singular at the origin.

A natural ellipticity condition for linear integro-differential operators would be to impose that the kernel is comparable to that of the fractional Laplacian. The condition could be \[ c_{s,n} \frac \lambda {|y|^{n+s}} \leq K(y) \leq c_{s,n} \frac \Lambda {|y|^{n+s}}, \text{ plus } K(y)=K(-y).\] But other conditions are possible.

Uniform ellipticity is linked to extremal operators. The classical Pucci maximal operators are the extremal of all uniformly elliptic operators which vanish at zero. \begin{align*} M^+(D^2 u) &= \sup_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij} \partial_{ij} u(x) = \Lambda tr(D^2u)^+ - \lambda tr(D^2u)^+,\\ M^-(D^2 u) &= \inf_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij} \partial_{ij} u(x) = \lambda tr(D^2u)^+ - \Lambda tr(D^2u)^+.\\ \end{align*} A fully nonlinear equation $F(D^2u)=0$ is uniformly elliptic if and only if for any two symmetric matrices $X$ and $Y$, \[M^-(X-Y) \leq F(X) - F(Y) \leq M^+(X-Y).\]

Given any family of kernels $\mathcal L$, we define \begin{align*} M_{\mathcal L}^+ u(x) &= \sup_{K \in \mathcal L} \int (u(x+y)-u(x)) K(y) dy, \\ M_{\mathcal L}^- u(x) &= \inf_{K \in \mathcal L} \int (u(x+y)-u(x)) K(y) dy. \end{align*} Thus, for a nonlocal operator $I$ (which is a black box that maps $C^2$ functions into continuous functions), we can say if is uniformly elliptic if for any two $C^2$ functions $u$ and $v$, \[ M_{\mathcal L}^- (u-v)(x) \leq Iu(x) - Iv(x) \leq M_{\mathcal L}^+ (u-v)(x).\]

The first choice of $\mathcal L$ would be the one described above \[ \mathcal L = \left\{ K : c_{s,n} \frac \lambda {|y|^{n+s}} \leq K(y) \leq c_{s,n} \frac \Lambda {|y|^{n+s}}, \text{ plus } K(y)=K(-y) \right\}.\]

In this case, the maximal operators take a particularly simple form

\begin{align*} M_{\mathcal L}^+ u(x) &= \frac{c_{n,s}}2 \int_{\R^n} \frac{\Lambda (u(x+y)+u(x-y)-2u(x))^+ - \lambda (u(x+y)+u(x-y)-2u(x))^-}{|y|^{n+s}} dy, \\ M_{\mathcal L}^- u(x) &= \frac{c_{n,s}}2 \int_{\R^n} \frac{\lambda (u(x+y)+u(x-y)-2u(x))^+ - \Lambda (u(x+y)+u(x-y)-2u(x))^-}{|y|^{n+s}} dy. \end{align*}

For other choices of $\mathcal L$, the operators $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ may not have an explicit expression.

Lecture 2