Boundary Harnack inequality

From Mwiki

Revision as of 02:34, 6 February 2012 by Luis (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The Boundary Harnack Inequality is a name given to two related statements for nonnegative functions $u$ which are solutions of elliptic equations.

The first result, also known as Carleson's estimate, says that for non-negative solutions, their values in a neighborhood of the (suitably smooth) boundary are bounded in terms of the value at some interior point. Let $u$ be a non-negative solution of an elliptic equation $Lu = 0$ on some domain $\Omega \subset \mathbb{R}^n$, such that $u = 0$ on $B_r(x_0) \cap \partial \Omega$, where $x_0$ lies on the boundary $\partial \Omega$, and $x'$ is some other point lying within $B_\frac{r}{2}(x_0) \cap \Omega$. Then, inside $B_\frac{r}{2}(x_0) \cap \Omega$, there exists a constant $M > 0$ such that $u(x) \leq M u(x')$.

The second result, also known as the boundary comparison estimate, says that two non-negative solutions which are zero on some portion of the boundary, have a Holder continuous ratio with respect to each other in some neighborhood of the boundary. That is, let $ Lu = Lv = 0$ inside some domain $\Omega$ with smooth boundary, with $u,v \geq 0$, and $u = v = 0$ along $B_r(x_0) \cap \partial \Omega$ for some $x_0 \in \partial \Omega$. Then the ratio $\frac{u}{v}$ lies in the Holder class $C^\alpha (B_\frac{r}{2}(x_0))$.

Further reading

This article is a stub. You can help this nonlocal wiki by expanding it.

Personal tools