Regularity results for nonlocal equations and Applications: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Luis
(Created page with "* Optimal control problems with Levy processes give rise to the Bellman equation, or in general any equation derived from jump processes will be some [[fully nonlinear in...")
 
Line 1: Line 1:
* Optimal control problems with [[Levy processes]] give rise to the [[Bellman equation]], or in general any equation derived from jump processes will be some [[fully nonlinear integro-differential equation]].
* In [[financial mathematics]] it is particularly important to study models involving jump processes. This can be considered a particular case of the item above (stochastic control), but it is a very relevant one. The pricing model for American options involves the [[obstacle problem]].
* [[Nonlocal electrostatics]] is a very promising tool for drug design which could potentially have a strong impact in medicine in the future.
* The denoising algorithms in [[nonlocal image processing]] are able to detect patterns in a better way than the PDE based models. A simple model for denoising is the [[nonlocal mean curvature flow]].
* The [[Boltzmann equation]] models the evolution of dilute gases and it is intrinsically an integral equation. In fact, simplified [[kinetic models]] can be used to derive the [[fractional heat equation]] without resorting to stochastic processes.
* In conformal geometry, the Paneitz operators encode information about the manifold, they include fractional powers of the Laplacian, which are nonlocal operators.
* In oceanography, the temperature on the surface may diffuse though the atmosphere giving rise to the [[surface quasi-geostrophic equation]].
* Models for [[dislocation dynamics]] in crystals.
* Several stochastic models, in particular particle systems, can be used to derive nonlocal equations like the [[Nonlocal porous medium equation]], the [[Hamilton-Jacobi equation with fractional diffusion]], [[conservation laws with fractional diffusion]], etc...
{{stub}}
{{stub}}
== Regularity results for linear equations with constant coefficients ==
== Regularity results for linear equations with smooth coefficients ==
== Regularity results for linear equations with rough coefficients ==
== Regularity results for nonlinear equations ==
* For general [[fully nonlinear integro-differential equations]], interior [[differentiability estimates|$C^{1,\alpha}$ estimates]] can be proved in a variety of situations. The simplest assumption would be for a translation invariant [[fully nonlinear integro-differential equations|uniformly elliptic]] equations with respect to the [[Linear integro-differential operator|class of kernels]] that are uniformly elliptic of order $s$ and in the smoothness class of order 1 <ref name="CS"/>. There are several other [[differentiability estimates|$C^{1,\alpha}$ estimates]] for variations of this situation (smooth coefficients, kernels close to the smoothness class, etc...) <ref name="CS2"/>.
* A [[nonlocal Evans-Krylov theorem|nonlocal version of Evans-Krylov theorem]] says that for the [[Bellman equation]], for a family of kernels that are uniformly elliptic of order $s$ and in the smoothness class of order 2, the solutions are $C^{s+\alpha}$ <ref name="CS3"/>. This is enough regularity for the solutions to be classical.
== References ==
{{reflist|refs=
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity theory for fully nonlinear integro-differential equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 | year=2009 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
<ref name="CS2">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity results for nonlocal equations by approximation | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=2009 | journal=Archive for Rational Mechanics and Analysis | issn=0003-9527 | pages=1–30}}</ref>
<ref name="CS3">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=The Evans-Krylov theorem for non local fully non linear equations | year=to appear | journal=[[Annals of Mathematics]] | issn=0003-486X}}</ref>
}}

Revision as of 09:56, 25 April 2012

This article is a stub. You can help this nonlocal wiki by expanding it.