Conformally invariant operators

From Mwiki

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
Examples of conformally invariant operators include:
Examples of conformally invariant operators include:
-
* The conformal Laplacian: $L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g$, where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.
+
* The conformal Laplacian:  
-
 
+
\[
-
* The Paneitz operator <ref name="paneitz1983quartic"/> <ref name="paneitz2008quartic"/>.
+
L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g,
-
 
+
\]
 +
where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.
 +
* The Paneitz operator <ref name="paneitz1983quartic"/> <ref name="paneitz2008quartic"/>:
 +
\[
 +
P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q,
 +
\]
 +
where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor,
 +
\[
 +
Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR
 +
\]
 +
and
 +
\[
 +
a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}.
 +
\]
 +
This is a fourth order operator with leading term $(-\Delta_g)^2$.
 +
* GJMS operators <ref name="GJMS"/>: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ is $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in <ref name="gover2004conformally"/> for $k>\frac n2$ and $n\ge 4$ even.
Line 18: Line 33:
== References ==
== References ==
{{reflist|refs=
{{reflist|refs=
 +
 +
<ref name="gover2004conformally">{{Citation | last1=Gover | first1= A | last2=Hirachi | first2= Kengo | title=Conformally invariant powers of the Laplacian—a complete nonexistence theorem | journal=Journal of the American Mathematical Society | volume=17 | pages=389--405}}</ref>
 +
 +
<ref name="GJMS">{{Citation | last1=Graham | first1= C Robin | last2=Jenne | first2= Ralph | last3=Mason | first3= Lionel J | last4=Sparling | first4= George AJ | title=Conformally invariant powers of the Laplacian, I: Existence | journal=Journal of the London Mathematical Society | year=1992 | volume=2 | pages=557--565}}</ref>
 +
<ref name="paneitz1983quartic">{{Citation | last1=Paneitz | first1= S | title=A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds |year=1983 | journal=preprint}}</ref>
<ref name="paneitz1983quartic">{{Citation | last1=Paneitz | first1= S | title=A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds |year=1983 | journal=preprint}}</ref>

Revision as of 20:32, 23 September 2013

On a general compact manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by \[ A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M), \] where $a, b$ are constant.

Examples of conformally invariant operators include:

  • The conformal Laplacian:

\[ L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g, \] where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.

  • The Paneitz operator [1] [2]:

\[ P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q, \] where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor, \[ Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR \] and \[ a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}. \] This is a fourth order operator with leading term $(-\Delta_g)^2$.

  • GJMS operators [3]: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ is $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in [4] for $k>\frac n2$ and $n\ge 4$ even.


References

  1. Paneitz, S (1983), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds", preprint 
  2. Paneitz, S (2008), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)", SIGMA Symmetry Integrability Geom. Methods Appl. (4), http://dx.doi.org/10.3842/SIGMA.2008.036 
  3. Graham, C Robin; Jenne, Ralph; Mason, Lionel J; Sparling, George AJ (1992), "Conformally invariant powers of the Laplacian, I: Existence", Journal of the London Mathematical Society 2: 557--565 
  4. Gover, A; Hirachi, Kengo, "Conformally invariant powers of the Laplacian—a complete nonexistence theorem", Journal of the American Mathematical Society 17: 389--405 
Personal tools