Semilinear equations and Talk:Starting page: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Luis
No edit summary
 
Line 1: Line 1:
An equation is called semilinear if it consists of the sum of a well understood linear term plus a lower order nonlinear term. For elliptic and parabolic equations, the two effective possibilities for the linear term is to be either the [[fractional Laplacian]] or the [[fractional heat equation]].
I am trying to apply to some make up to the starting page. The more polished the wiki looks, the more people will feel its worth their time to write on it, however, I am still learning the format-fu for wikis so it might take a while before it looks good. ([[User:Nestor|Nestor]] 15:09, 5 February 2012 (CST))


Some equations which technically do not satisfy the definition above are still considered semilinear. For example evolution equations of the form
Also, there is some discussion at the end of this article which is probably better placed in the [[Introduction to non-local equations]] page, I am going to move it there. ([[User:Nestor|Nestor]] 22:06, 6 February 2012 (CST))
\[ u_t + (-\Delta)^s u + H(x,u,Du) = 0 \]
can be thought of as semilinear equations even if $s<1/2$.


== Some common semilinear equations ==
When I originally wrote the link to the non existent page ''Intro to nonlocal equations'' I was envisioning a page explaining mostly what a non local equation is and some general intuition. Since such page is hard to write, the link stayed red forever. ([[User:Luis|Luis]] 22:17, 6 February 2012 (CST))
 
=== The most common elliptic equation in the world (provisional title) ===
Adding a zeroth order term to the right hand side to either the Laplace equation or the fractional Laplace equation is probably the theme for which the largest number of papers have been written on PDEs.
\[ (-\Delta)^s u = f(u). \]
If $f$ is $C^\infty$ and some initial regularity can be shown to the solution $u$ (like $L^p$), then the solution $u$ will also be $C^\infty$, which can be shown by a standard [[bootstrapping]].
 
Natural question to ask about this type of equations are about the existence of nontrivial global solutions that vanish at infinity, positivity of solutions, symmetries, etc... Depending on the structure of the nonlinearity $f(u)$, different results are obtained <ref name="OLC"/> <ref name="CS"/> <ref name="CC"/> <ref name="LF"/> <ref name="FQT"/> <ref name="SV"/> <ref name="PSV"/>.
 
=== Reaction diffusion equations ===
This general class refers to the equations we get by adding a zeroth order term to the right hand side of a heat equation. For the fractional case, it would look like
\[ u_t + (-\Delta)^s u = f(u). \]
 
The case $f(u) = u(1-u)$ corresponds to the KPP/Fisher equation. For this and other related models, it makes sense to study solutions restricted to $0 \leq u \leq 1$. The research centers around traveling waves, their stability, limits, asymptotic behavior <ref name="CR"/>, etc... Solutions are trivially $C^\infty$ so there is no issue about regularity.
 
=== Burgers equation with fractional diffusion ===
It refers to the parabolic equation for a function on the real line $u:[0,+\infty) \times \R \to \R$,
\[ u_t + u \ u_x + (-\Delta)^s u = 0 \]
The equation is known to be well posed if $s \geq 1/2$ and to develop shocks if $s<1/2$ <ref name="KNS"/>. Still, if $s \in (0,1/2)$, the solution regularizes for large enough times<ref name="CCS"/><ref name="K"/>.
 
=== [[Surface quasi-geostrophic equation]] ===
It refers to the parabolic equation for a scalar function on the plane $\theta:[0,+\infty) \times \R^2 \to \R$,
\[ \theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0 \]
where $u = R^\perp \theta$ (and $R$ is the Riesz transform).
 
The equation is well posed if $s \geq 1/2$. The well posedness in the case $s < 1/2$ is a major open problem. It is believed that solving the supercritical SQG equation could possibly help understand 3D Navier-Stokes equation.
 
=== Conservation laws with fractional diffusion ===
(aka "fractal conservation laws")
It refers to parabolic equations of the form
\[ u_t + \mathrm{div } F(u) + (-\Delta)^s u = 0.\]
The Cauchy problem is known to be well posed classically if $s > 1/2$ <ref name="DI"/>. For $s<1/2$ there are viscosity solutions that are not $C^1$.
 
The critical case $s=1/2$ appears not to be written anywhere. However, it can be solved following the same method as for the Hamilton-Jacobi equations with fractional diffusion (below) <ref name="S"/> or the modulus of continuity approach <ref name="K"/>.
 
=== Hamilton-Jacobi equation with fractional diffusion ===
It refers to the parabolic equation
\[ u_t + H(\nabla u) + (-\Delta)^s u = 0.\]
 
The Cauchy problem is known to be well posed classically if $s \geq 1/2$. For $s<1/2$ there are viscosity solutions that are not $C^1$.
 
The subcritical case $s>1/2$ can be solved with classical [[bootstrapping]] <ref name="DI"/>. The critical case $s=1/2$ was solved using the regularity results for [[drift-diffusion equations]] <ref name="S"/>.
 
== References ==
{{reflist|refs=
<ref name="OLC">{{Citation | last1=Ou | first1=Biao | last2=Li | first2=Congming | last3=Chen | first3=Wenxiong | title=Classification of solutions for an integral equation | url=http://dx.doi.org/10.1002/cpa.20116 | doi=10.1002/cpa.20116 | year=2006 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=59 | issue=3 | pages=330–343}}</ref>
<ref name="KNS">{{Citation | last1=Kiselev | first1=Alexander | last2=Nazarov | first2=Fedor | last3=Shterenberg | first3=Roman | title=Blow up and regularity for fractal Burgers equation | year=2008 | journal=Dynamics of Partial Differential Equations | issn=1548-159X | volume=5 | issue=3 | pages=211–240}}</ref>
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion | url=http://dx.doi.org/10.1016/j.aim.2010.09.007 | doi=10.1016/j.aim.2010.09.007 | year=2011 | journal=Advances in Mathematics | issn=0001-8708 | volume=226 | issue=2 | pages=2020–2039}}</ref>
<ref name="CCS">{{Citation | last1=Chan | first1=Chi Hin | last2=Czubak | first2=Magdalena | last3=Silvestre | first3=Luis | title=Eventual regularization of the slightly supercritical fractional Burgers equation | url=http://dx.doi.org/10.3934/dcds.2010.27.847 | doi=10.3934/dcds.2010.27.847 | year=2010 | journal=Discrete and Continuous Dynamical Systems. Series A | issn=1078-0947 | volume=27 | issue=2 | pages=847–861}}</ref>
<ref name="K">{{Citation | last1=Kiselev | first1=A. | title=Nonlocal maximum principles for active scalars | year=to appear | journal=Advances in Mathematics}}</ref>
<ref name="DI">{{Citation | last1=Droniou | first1=Jérôme | last2=Imbert | first2=Cyril | title=Fractal first-order partial differential equations | url=http://dx.doi.org/10.1007/s00205-006-0429-2 | doi=10.1007/s00205-006-0429-2 | year=2006 | journal=Archive for Rational Mechanics and Analysis | issn=0003-9527 | volume=182 | issue=2 | pages=299–331}}</ref>
<ref name="CR">{{Citation | last1=Cabré | first1=Xavier | last2=Roquejoffre | first2=Jean-Michel | title=Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire | url=http://dx.doi.org/10.1016/j.crma.2009.10.012 | doi=10.1016/j.crma.2009.10.012 | year=2009 | journal=Comptes Rendus Mathématique. Académie des Sciences. Paris | issn=1631-073X | volume=347 | issue=23 | pages=1361–1366}}</ref>
<ref name="CS">{{Citation | last1=Cabre | first1=X. | last2=Sire | first2=Yannick | title=Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates | year=2010 | journal=Arxiv preprint arXiv:1012.0867}}</ref>
<ref name="CC"> {{Citation | last1=Cabré | first1=Xavier | last2=Cinti | first2=E. | title=Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian | year=2010 | journal=Discrete and Continuous Dynamical Systems (DCDS-A) | volume=28 | issue=3 | pages=1179–1206}} </ref>
<ref name="LF">{{Citation | last1=Frank | first1=R.L. | last2=Lenzmann | first2=E. | title=Uniqueness and Nondegeneracy of Ground States for $(-\Delta)^s Q+ Q-Q^{\alpha+1}= 0$ in $\R$ | year=2010 | journal=Arxiv preprint arXiv:1009.4042}}</ref>
<ref name="FQT">{{Citation | last1=Felmer | first1=P. | last2=Quaas | first2=A. | last3=Tan | first3=J. | title=Positive Solutions Of Nonlinear Schrodinger Equation With The Fractional Laplacian.}}</ref>
<ref name="SV"> {{Citation | last1=Sire | first1=Yannick | last2=Valdinoci | first2=E. | title=Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result | publisher=[[Elsevier]] | year=2009 | journal=Journal of Functional Analysis | issn=0022-1236 | volume=256 | issue=6 | pages=1842–1864}} </ref>
<ref name="PSV">{{Citation | last1=Palatucci | first1=G. | last2=Valdinoci | first2=E. | last3=Savin | first3=O. | title=Local and global minimizers for a variational energy involving a fractional norm | year=2011 | journal=Arxiv preprint arXiv:1104.1725}}</ref>
}}

Revision as of 23:17, 6 February 2012

I am trying to apply to some make up to the starting page. The more polished the wiki looks, the more people will feel its worth their time to write on it, however, I am still learning the format-fu for wikis so it might take a while before it looks good. (Nestor 15:09, 5 February 2012 (CST))

Also, there is some discussion at the end of this article which is probably better placed in the Introduction to non-local equations page, I am going to move it there. (Nestor 22:06, 6 February 2012 (CST))

When I originally wrote the link to the non existent page Intro to nonlocal equations I was envisioning a page explaining mostly what a non local equation is and some general intuition. Since such page is hard to write, the link stayed red forever. (Luis 22:17, 6 February 2012 (CST))