# Dirichlet form

(Difference between revisions)
Jump to: navigation, search
 Revision as of 21:46, 18 November 2012 (view source)Nestor (Talk | contribs)← Older edit Revision as of 21:53, 18 November 2012 (view source)Nestor (Talk | contribs) Newer edit → Line 4: Line 4:  - A Dirichlet form in $\mathbb{R}^n$ is a bilinear function + A Dirichlet form in $\mathbb{R}^n$ is a bilinear function - \begin{equation*} + \begin{equation*} - \mathcal{E}: D\times D \to \mathbb{R} + \mathcal{E}: D\times D \to \mathbb{R} - \end{equation*} + \end{equation*} - with the following properties + with the following properties - * The domain $D$ is a dense subset of $\mathbb{R}^n$ and + 1) The domain $D$ is a dense subset of $\mathbb{R}^n$ - * $\mathcal{E}$ is symmetric, that is $\mathcal{E}(f,g)=\mathcal{E}(g,f)$ for any $f,g \in D$. + - * $\mathcal{E}(f,f)\geq 0$ for any $f \in D$. + - * The set $D$ equipped with the inner product defined by + - \begin{equation*} + 2) $\mathcal{E}$ is symmetric, that is $\mathcal{E}(f,g)=\mathcal{E}(g,f)$ for any $f,g \in D$. - (f,g)_{\mathcal{E}} := (f,g)_{L^2(\mathbb{R}^n)} + \mathcal{E}(f,g) + - \end{equation*} + + 3) $\mathcal{E}(f,f)\geq 0$ for any $f \in D$. + 4) The set $D$ equipped with the inner product defined by $(f,g)_{\mathcal{E}} := (f,g)_{L^2(\mathbb{R}^n)} + \mathcal{E}(f,g)$ is a real Hilbert space. - A Dirichlet form refers to a quadratic functional defined by an integral of the form + 5) For any $f \in D$ we have that $f_* = (f\vee 0) \wedge 1 \in D$ and $\mathcal{E}(f_*,f_*)\leq \mathcal{E}(f,f)$ + + + A particular case of a Dirichlet form are defined by integrals of the form $\iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y,$ $\iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y,$ for some nonnegative kernel $K$. for some nonnegative kernel $K$. Line 29: Line 29: If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared. If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared. - Dirichlet forms are natural generalizations to fractional order of the Dirichlet integrals + Dirichlet forms are natural generalizations of the Dirichlet integrals $\int a_{ij}(x) \partial_i u \partial_j u \dd x,$ $\int a_{ij}(x) \partial_i u \partial_j u \dd x,$ where $a_{ij}$ is elliptic. where $a_{ij}$ is elliptic.

## Revision as of 21:53, 18 November 2012

$$\newcommand{\dd}{\mathrm{d}} \newcommand{\R}{\mathbb{R}}$$

A Dirichlet form in $\mathbb{R}^n$ is a bilinear function

\begin{equation*} \mathcal{E}: D\times D \to \mathbb{R} \end{equation*}

with the following properties

1) The domain $D$ is a dense subset of $\mathbb{R}^n$

2) $\mathcal{E}$ is symmetric, that is $\mathcal{E}(f,g)=\mathcal{E}(g,f)$ for any $f,g \in D$.

3) $\mathcal{E}(f,f)\geq 0$ for any $f \in D$.

4) The set $D$ equipped with the inner product defined by $(f,g)_{\mathcal{E}} := (f,g)_{L^2(\mathbb{R}^n)} + \mathcal{E}(f,g)$ is a real Hilbert space.

5) For any $f \in D$ we have that $f_* = (f\vee 0) \wedge 1 \in D$ and $\mathcal{E}(f_*,f_*)\leq \mathcal{E}(f,f)$

A particular case of a Dirichlet form are defined by integrals of the form $\iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y,$ for some nonnegative kernel $K$.

If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared.

Dirichlet forms are natural generalizations of the Dirichlet integrals $\int a_{ij}(x) \partial_i u \partial_j u \dd x,$ where $a_{ij}$ is elliptic.

The Euler-Lagrange equation of a Dirichlet form is a fractional order version of elliptic equations in divergence form. They are studied using variational methods and they are expected to satisfy similar properties [1][2][3].

## References

(There should be a lot more references here)

1. Barlow, Martin T.; Bass, Richard F.; Chen, Zhen-Qing; Kassmann, Moritz (2009), "Non-local Dirichlet forms and symmetric jump processes", Transactions of the American Mathematical Society 361 (4): 1963–1999, doi:10.1090/S0002-9947-08-04544-3, ISSN 0002-9947
2. Kassmann, Moritz (2009), "A priori estimates for integro-differential operators with measurable kernels", Calculus of Variations and Partial Differential Equations 34 (1): 1–21, doi:10.1007/s00526-008-0173-6, ISSN 0944-2669
3. Caffarelli, Luis; Chan, Chi Hin; Vasseur, Alexis (2011), Journal of the American Mathematical Society (24): 849–869, doi:10.1090/S0894-0347-2011-00698-X, ISSN 0894-0347

This article is a stub. You can help this nonlocal wiki by expanding it.