Dirichlet form

From Mwiki

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
$$
$$
-
    A Dirichlet form in $\mathbb{R}^n$ is a bilinear function
+
A Dirichlet form in $\mathbb{R}^n$ is a bilinear function
-
    \begin{equation*}
+
\begin{equation*}
-
          \mathcal{E}: D\times D \to \mathbb{R}
+
\mathcal{E}: D\times D \to \mathbb{R}
-
    \end{equation*}
+
\end{equation*}
-
    with the following properties
+
with the following properties
-
    * The domain $D$ is a dense subset of $\mathbb{R}^n$ and
+
1) The domain $D$ is a dense subset of $\mathbb{R}^n$
-
    * $\mathcal{E}$ is symmetric, that is $\mathcal{E}(f,g)=\mathcal{E}(g,f)$ for any $f,g \in D$.
+
-
    * $\mathcal{E}(f,f)\geq 0$ for any $f \in D$.
+
-
    * The set $D$ equipped with the inner product defined by
+
-
    \begin{equation*}
+
2) $\mathcal{E}$ is symmetric, that is $\mathcal{E}(f,g)=\mathcal{E}(g,f)$ for any $f,g \in D$.
-
          (f,g)_{\mathcal{E}} := (f,g)_{L^2(\mathbb{R}^n)} + \mathcal{E}(f,g)
+
-
    \end{equation*}
+
 +
3) $\mathcal{E}(f,f)\geq 0$ for any $f \in D$.
 +
4) The set $D$ equipped with the inner product defined by $(f,g)_{\mathcal{E}} := (f,g)_{L^2(\mathbb{R}^n)} + \mathcal{E}(f,g)$ is a real Hilbert space.
-
A Dirichlet form refers to a quadratic functional defined by an integral of the form
+
5) For any $f \in D$ we have that $f_* = (f\vee 0) \wedge 1 \in D$ and $\mathcal{E}(f_*,f_*)\leq \mathcal{E}(f,f)$
 +
 
 +
 
 +
A particular case of a Dirichlet form are defined by integrals of the form
\[ \iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y, \]
\[ \iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y, \]
for some nonnegative kernel $K$.
for some nonnegative kernel $K$.
Line 29: Line 29:
If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared.
If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared.
-
Dirichlet forms are natural generalizations to fractional order of the Dirichlet integrals
+
Dirichlet forms are natural generalizations of the Dirichlet integrals
\[ \int a_{ij}(x) \partial_i u \partial_j u \dd x, \]
\[ \int a_{ij}(x) \partial_i u \partial_j u \dd x, \]
where $a_{ij}$ is elliptic.
where $a_{ij}$ is elliptic.

Revision as of 21:53, 18 November 2012

$$ \newcommand{\dd}{\mathrm{d}} \newcommand{\R}{\mathbb{R}} $$

A Dirichlet form in $\mathbb{R}^n$ is a bilinear function

\begin{equation*} \mathcal{E}: D\times D \to \mathbb{R} \end{equation*}

with the following properties

1) The domain $D$ is a dense subset of $\mathbb{R}^n$

2) $\mathcal{E}$ is symmetric, that is $\mathcal{E}(f,g)=\mathcal{E}(g,f)$ for any $f,g \in D$.

3) $\mathcal{E}(f,f)\geq 0$ for any $f \in D$.

4) The set $D$ equipped with the inner product defined by $(f,g)_{\mathcal{E}} := (f,g)_{L^2(\mathbb{R}^n)} + \mathcal{E}(f,g)$ is a real Hilbert space.

5) For any $f \in D$ we have that $f_* = (f\vee 0) \wedge 1 \in D$ and $\mathcal{E}(f_*,f_*)\leq \mathcal{E}(f,f)$


A particular case of a Dirichlet form are defined by integrals of the form \[ \iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y, \] for some nonnegative kernel $K$.

If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared.

Dirichlet forms are natural generalizations of the Dirichlet integrals \[ \int a_{ij}(x) \partial_i u \partial_j u \dd x, \] where $a_{ij}$ is elliptic.

The Euler-Lagrange equation of a Dirichlet form is a fractional order version of elliptic equations in divergence form. They are studied using variational methods and they are expected to satisfy similar properties [1][2][3].

References

(There should be a lot more references here)

  1. Barlow, Martin T.; Bass, Richard F.; Chen, Zhen-Qing; Kassmann, Moritz (2009), "Non-local Dirichlet forms and symmetric jump processes", Transactions of the American Mathematical Society 361 (4): 1963–1999, doi:10.1090/S0002-9947-08-04544-3, ISSN 0002-9947, http://dx.doi.org/10.1090/S0002-9947-08-04544-3 
  2. Kassmann, Moritz (2009), "A priori estimates for integro-differential operators with measurable kernels", Calculus of Variations and Partial Differential Equations 34 (1): 1–21, doi:10.1007/s00526-008-0173-6, ISSN 0944-2669, http://dx.doi.org/10.1007/s00526-008-0173-6 
  3. Caffarelli, Luis; Chan, Chi Hin; Vasseur, Alexis (2011), Journal of the American Mathematical Society (24): 849–869, doi:10.1090/S0894-0347-2011-00698-X, ISSN 0894-0347 


This article is a stub. You can help this nonlocal wiki by expanding it.

Personal tools