Levy processes and Obstacle problem for the fractional Laplacian: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>Luis
 
Line 1: Line 1:
A Lévy process is an important type of [[stochastic process]] (namely, a family of $\mathbb{R}^d$ valued random variables each indexed by a positive number $t\geq 0$). In the context of parabolic integro-differential equations they play the same role that Brownian motion and more general diffusions play in the theory of second order parabolic equations.
The obstacle problem for the fractional Laplacian refers to the particular case of the [[obstacle problem]] when the elliptic operator $L$ is given by the [[fractional Laplacian]]: $L = -(-\Delta)^s$ for some $s \in (0,1)$. Given some smooth function $\varphi$, the equation reads
\begin{align}
u &\geq \varphi \qquad \text{everywhere}\\
(-\Delta)^s u &\geq 0 \qquad \text{everywhere}\\
(-\Delta)^s u &= 0 \qquad \text{wherever } u > \varphi.
\end{align}


Informally speaking, a Lévy process is a random trajectory, generalizing the concept of Brownian motion, which may contain jump discontinuities. A prototypical example would be $X(t)=B(t)+N(t)$ where $B(t)$ is the standard [[Brownian motion]] and $N(t)$ is a [[Compound Poisson process]], the trajectory described by typical sample path of this process would look like the union of several disconnected Brownian motion paths.
The equation is derived from an [[optimal stopping problem]] when considering $\alpha$-stable Levy processes. It serves as the simplest model for other optimal stopping problems with purely jump processes and therefore its understanding is relevant for applications to [[financial mathematics]].


== Definition ==
== Existence and uniqueness ==
The equation can be studied from either a variational or a non-variational point of view, and with or without boundary conditions.


A stochastic process $X=\{X(t)\}_{t \geq 0}$ with values in $\mathbb{R}^d$ is said to be a Lévy process if
As a variational inequality the equation emerges as the minimizer of the homoegeneous $\dot H^s$ norm from all functions $u$ such that $u \geq \varphi$. In the case when the domain is the full space $\mathbb R^d$, a decay at infinity $u(x) \to 0$ as $|x| \to \infty$ is usually assumed. Note that in low dimensions $\dot H^s$ is not embedded in $L^p$ for any $p<\infty$ and therefore the boundary condition at infinity cannot be assured. In low dimensions one can overcome this inconvenience by minimizing the full $H^s$ norm and therefore obtaining the equation with an extra term of zeroth order:
\begin{align}
u &\geq \varphi \qquad \text{everywhere}\\
(-\Delta)^s u + u &\geq 0 \qquad \text{everywhere}\\
(-\Delta)^s u + u &= 0 \qquad \text{wherever } u > \varphi.
\end{align}
This extra zeroth order term does not affect any regularity consideration for the solution.


1.For any sequence $0 \leq t_1 < t_2 <...<t_n$ the random variables $X(t_0),X(t_1)-X(t_0),...,X(t_n)-X(t_{n-1})$ are independent.
From a non variational point of view, the solution $u$ can be obtained as the smallest $s$-superharmonic function (i.e. $(-\Delta)^s u \geq 0$ such that $u \geq \varphi$. In low dimensions one cannot assure the boundary condition at infinity because of the impossibility of constructing barriers (this is related to the fact that the fundamental solutions $|x|^{-n+2s}$ fail to decay to zero at infinity if $2s \geq n$). This can be overcome with the addition of the zeroth order term or by the study of the problem in a bounded domain with Dirichlet boundary conditions in the complement.


2.For any positive times $s\leq t$ the random variables $X(t-s)$ and $X(t)-X(s)$ have the same probability law.
== Regularity considerations ==
=== Regularity of the solution ===
Assuming that the obstacle $\varphi$ is smooth, the optimal regularity of the solution is $C^{1,s}$.


3.Almost surely, the trajectory of $X(t)$ is continuous from the right, with limit from the left also known as "càdlàg" for its acronym in french.  
The regularity $C^{1,s}$ coincides with $C^{1,1}$ when $s=1$, which is the optimal regularity in the classical case of the Laplacian. However, adapting the ideas of the classical proof to the fractional case suggests that the optimal regularity should be only $C^{2s}$. The optimal regularity in the case $s<1$ is better than the order of the equation and cannot be justified by any simple scaling argument.


== Lévy-Khintchine Formula ==
<div style="background:#EEEEEE;">
'''Outline of the proof.'''


It follows from the first two properties above that if $X$ is a Lévy process and we further assume $X(0)=0$ a.s. then for each fixed positive $t$ the random variable $X(t)$ is infinitely divisible, that is, it can be written as the sum of $n$ independent and identically distribued random variables, for all $n\in\mathbb{N}$. Indeed, let $h=\tfrac{t}{n}$, then
The proof consists of the following steps that we sketch below.


\[X(t) = \left( X(h)-X(0)\right)+\left( X(2h)-X(h)\right)+...+\left( X(t)-X((n-1)h)\right)\]
*'''Almost $C^{2s}$ regularity'''
This first step of the proof is the simplest and it is the only step which is an adaptation of the classical case $s=1$.  


and by the above definition the differences $X(kh)-X((k-1)h)$ are independent and distributed the same as $X(h)$. From the infinite divisibility of $X(t)$ it follows by a theorem of Lévy and Khintchine that  for any $\xi \in \mathbb{R}^d$ we have
From the statement of the equation we have $(-\Delta)^s u \geq 0$.


\[ \mathbb{E} \left [ e^{i\xi\cdot X_t}\right ] = e^{t\eta(\xi)}\]
Since the average of two $s$-superharmonic function is also $s$-superharmonic, one can see that for any $h \in \mathbb R^d$, the function $v(x):=(u(x+h)+u(x-h))/2 + C|h|^2$ is $s$ superharmonic and $v \geq \varphi$ if $C = ||D^2 \varphi||_{L^\infty}$. By the comparison principle $v \geq u$. This means that $u$ is semiconvex: $D^2 u \geq -C I$.


the function $\eta(\xi)$ given by
Interpolating the semiconvexity and $L^\infty$ boundedness of $u$, we obtain that $(-\Delta)^s u \leq C$ for some constant $C$.


\[\eta(\xi)=i y\cdot b  -\tfrac{1}{2}(A\xi,\xi)+\int_{\mathbb{R}^d} \left ( e^{i \xi\cdot y}-1-i\xi\cdot y \chi_{B_1}(y) \right ) d\mu(y)  \]
The boundedness of $(-\Delta)^s u$ does not imply that $u \in C^{2s}$ but it does imply that $u \in C^\alpha$ for all $\alpha < s$.


where $b$ is a vector, $A$ is a positive matrix, $B_1$ is the unit ball and $\mu$ is a Lévy measure, that is, a Borel measure in $\mathbb{R}^d$ such that
*'''$C^{2s+\alpha}$ regularity, for some small $\alpha>0$'''
Let $w(x) = (-\Delta)^s u(x)$. A key observation is that the function $w$ satisfies the equation
\begin{align}
(-\Delta)^{1-s} w &= -\Delta \varphi \qquad \text{in } \{u=\varphi\}, \\
w &= 0 \qquad \text{outside } \{u=\varphi\}.
\end{align}


\[ \int_{\mathbb{R}^d}\frac{|y|^2}{1+|y|^2}d\mu(y) <+\infty. \]
This is a Dirichlet problem for the conjugate fractional Laplacian. However there are two difficulties. First of all we need to prove that $w$ is continuous on the boundary $\partial \{u=\varphi\}$. Second, this boundary can be highly irregular a priori so we cannot expect to obtain any H\"older continuity of $w$ from the Dirichlet problem alone.


The interpretation of this measure $\mu$ is that ''jumps'' from some point $x$ to $x+y$ with $y$ in some set $A$ occur as a Poisson process with intensity $\mu(A)$.
From the semiconvexity of $u$ we have $-\Delta u \leq C$, and therefore we derive the extra condition $(-\Delta)^{1-s} w \leq C$ in the full space $\R^d$ (in particular across the boundary $\partial \{u=\varphi\}$). Moreover, we also know that $w \geq 0$ everywhere.


== Connection with linear integro-differential operators ==
The $C^\alpha$ Holder continuity of $w$ on the boundary $\partial \{u=\varphi\}$ is obtained from an [[iterative improvement of oscillation]] procedure. Since $w \geq 0$ and $(-\Delta)^{1-s} u \leq C$, for any $x_0$ on $\partial \{u=\varphi\}$ we can show that $\max_{B_r(x_0)} w$ decays provided that $\{u > \varphi\} \cap B_r$ is sufficiently "thick" using the [[weak Harnack inequality]]. We cannot rule out the case in which $\{u > \varphi\} \cap B_r$ has a very small measure. However, in the case that $\{u > \varphi\} \cap B_r$ is too small in measure, we can prove that $u$ separates very slowly from $\varphi$. This slow separation is used to prove that $w$ must also improve its oscillation and this step is particularly tricky <ref name="S"/>.


Any Lévy process $X(t)$ such that $X(0)=0$ defines a linear semigroup $\{U_t\}_{t\geq0}$ on the space  of continuous functions $f:\mathbb{R}^d\to\mathbb{R}^d$ as follows
Once we know that $w(x) = (-\Delta)^s u(x)$ is $C^\alpha$, this implies that $u \in C^{2s+\alpha}$ by classical potential analysis theory.


\[(U_tf)(x)= \mathbb{E}\left [ f(x+X(t)) \right ]\]
*'''$C^{1,s}$ regularity'''
If the contact set $\{u=\varphi\}$ is convex or at least has an exterior ball condition, a fairly simple barrier function can be constructed to show that $w$ must be $C^{1-s}$ on the boundary $\partial \{u=\varphi\}$. This is the generic boundary regularity for solutions of fractional Laplace equations in smooth domains.


Given the initial assumption on $X(0)$ it is clear that $U_0$ is the identity, and given that $X(t)-X(s)$ is distributed as $X(t-s)$ it follows that $U_t \circ U_s = U_{t+s}$.  
Without assuming anything on the contact set $\{u=\varphi\}$, one can still obtain that $w \in C^\alpha$ for every $\alpha < 1-s$ through an iterative use of barrier functions <ref name="S"/>. The sharp $w \in C^{1-s}$ regularity in full generality was obtained rewriting the equation as a [[thin obstacle problem]] using the [[extension technique]] and then applying blowup techniques, the Almgren monotonicity formula and classification of global solutions <ref name="CSS"/>.


As a semigroup, $U_t$ has an infinitesimal generator which turns out to be a [[Linear integro-differential operator]]. More precisely, if we let $f(x,t):=(U_tf)(x)$, then, assuming that $f(x,t)$ has enough regularity it can be checked that
The $C^{1-s}$ regularity of $w$ implies that $u \in C^{1,s}$ by classical potential analysis.
</div>


\[\partial_t f = Lf \;\;\;\mbox{ for all } (x,t)\in\mathbb{R}^d\times \mathbb{R}_+\]
=== Regularity of the free boundary ===
A ''regular point'' of the free boundary is where the solution $u$ is exactly $C^{1,s}$ an no better. This is classified explicitly in terms of the limits of the Almgren frequency formula <ref name="CSS"/>. Around any regular point, the free boundary is a smooth $C^{1,\alpha}$ surface <ref name="CSS"/>.


where for any smooth function $\phi$, we have
A ''singular point'' is defined as a point on the free boundary where the measure of the contact set has vanishing density. More precisely, if
\[ \lim_{r \to 0} \frac{|\{u=\varphi\} \cap B_r|}{r^n} = 0.\]


\[ L\phi(x) = b \cdot \nabla \phi(x) +\mathrm{tr} \,( A\cdot D^2 \phi )+ \int_{\R^d} (\phi(x+y) - \phi(x) - y \cdot \nabla \phi(x) \chi_{B_1}(y)) \, \mathrm{d} \mu(y) \]
In the case $s=1/2$, it was shown by Nicola Garofalo and Arshak Petrosyan <ref name="GP"/> that the singular points of the free boundary are contained  inside a differentiable surface. The proof is done in the context of the [[thin obstacle problem]] and presumably can be extended to other powers of the Laplacian using the [[extension technique]].


== [[Stochastic control]] and fully non-linear integro-differential operators ==
It is important to notice that the definitions of regular and singular points of the free boundary are mutually exclusive but they do not exhaust all possible free boundary points. It is an interesting open problem to understand what other type of free boundary points are possible if any.


A similar connection holds via the [[Isaacs equation|Isaacs-Bellman]] equation arising in [[stochastic control]] problems (or more generally in stochastic games). In this case the corresponding semigroup is not linear, and instead one must work in terms of [[viscosity solutions]] to build it.
== The parabolic version ==
 
The parabolic version of the fractional obstacle problem was studied by Caffarelli and Figalli <ref name="CF"/>. They concluded that the solution $u$ has the following regularity estimates.
\begin{align}
u_t, (-\Delta)^s u \in LogLip_t C_x^{1-s}, \text{ if } s\leq 1/3,\\
u_t, (-\Delta)^s u \in C_{t,x}^{\frac{1-s}{2s},{1-s}}, \text{ if } s > 1/3.
\end{align}
 
It turns out that it is crucial to consider solutions $u$ to be non decreasing in time (which is assured by taking the initial value coinciding with the obstacle). Otherwise the regularity of the solution is reduced to merely $C^{2s}$ in space.
 
The regularity of the free boundary has not been explored in the parabolic setting yet.
 
== References ==
{{reflist|refs=
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Regularity of the obstacle problem for a fractional power of the Laplace operator | publisher=Wiley Online Library | year=2007 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=60 | issue=1 | pages=67–112}}</ref>
<ref name="CSS">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Salsa | first2=Sandro | last3=Silvestre | first3=Luis | title=Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian | url=http://dx.doi.org/10.1007/s00222-007-0086-6 | doi=10.1007/s00222-007-0086-6 | year=2008 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=171 | issue=2 | pages=425–461}}</ref>
<ref name="CF">{{Citation | last1=Figalli | first1=A. | last2=Caffarelli | first2=Luis | title=Regularity of solutions to the parabolic fractional obstacle problem | year=2011 | journal=Arxiv preprint arXiv:1101.5170}}</ref>
<ref name="GP">{{Citation | last1=Petrosyan | first1=A. | last2=Garofalo | first2=N. | title=Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=2009 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=177 | issue=2 | pages=415–461}}</ref>
}}

Revision as of 19:29, 7 February 2012

The obstacle problem for the fractional Laplacian refers to the particular case of the obstacle problem when the elliptic operator $L$ is given by the fractional Laplacian: $L = -(-\Delta)^s$ for some $s \in (0,1)$. Given some smooth function $\varphi$, the equation reads \begin{align} u &\geq \varphi \qquad \text{everywhere}\\ (-\Delta)^s u &\geq 0 \qquad \text{everywhere}\\ (-\Delta)^s u &= 0 \qquad \text{wherever } u > \varphi. \end{align}

The equation is derived from an optimal stopping problem when considering $\alpha$-stable Levy processes. It serves as the simplest model for other optimal stopping problems with purely jump processes and therefore its understanding is relevant for applications to financial mathematics.

Existence and uniqueness

The equation can be studied from either a variational or a non-variational point of view, and with or without boundary conditions.

As a variational inequality the equation emerges as the minimizer of the homoegeneous $\dot H^s$ norm from all functions $u$ such that $u \geq \varphi$. In the case when the domain is the full space $\mathbb R^d$, a decay at infinity $u(x) \to 0$ as $|x| \to \infty$ is usually assumed. Note that in low dimensions $\dot H^s$ is not embedded in $L^p$ for any $p<\infty$ and therefore the boundary condition at infinity cannot be assured. In low dimensions one can overcome this inconvenience by minimizing the full $H^s$ norm and therefore obtaining the equation with an extra term of zeroth order: \begin{align} u &\geq \varphi \qquad \text{everywhere}\\ (-\Delta)^s u + u &\geq 0 \qquad \text{everywhere}\\ (-\Delta)^s u + u &= 0 \qquad \text{wherever } u > \varphi. \end{align} This extra zeroth order term does not affect any regularity consideration for the solution.

From a non variational point of view, the solution $u$ can be obtained as the smallest $s$-superharmonic function (i.e. $(-\Delta)^s u \geq 0$ such that $u \geq \varphi$. In low dimensions one cannot assure the boundary condition at infinity because of the impossibility of constructing barriers (this is related to the fact that the fundamental solutions $|x|^{-n+2s}$ fail to decay to zero at infinity if $2s \geq n$). This can be overcome with the addition of the zeroth order term or by the study of the problem in a bounded domain with Dirichlet boundary conditions in the complement.

Regularity considerations

Regularity of the solution

Assuming that the obstacle $\varphi$ is smooth, the optimal regularity of the solution is $C^{1,s}$.

The regularity $C^{1,s}$ coincides with $C^{1,1}$ when $s=1$, which is the optimal regularity in the classical case of the Laplacian. However, adapting the ideas of the classical proof to the fractional case suggests that the optimal regularity should be only $C^{2s}$. The optimal regularity in the case $s<1$ is better than the order of the equation and cannot be justified by any simple scaling argument.

Outline of the proof.

The proof consists of the following steps that we sketch below.

  • Almost $C^{2s}$ regularity

This first step of the proof is the simplest and it is the only step which is an adaptation of the classical case $s=1$.

From the statement of the equation we have $(-\Delta)^s u \geq 0$.

Since the average of two $s$-superharmonic function is also $s$-superharmonic, one can see that for any $h \in \mathbb R^d$, the function $v(x):=(u(x+h)+u(x-h))/2 + C|h|^2$ is $s$ superharmonic and $v \geq \varphi$ if $C = ||D^2 \varphi||_{L^\infty}$. By the comparison principle $v \geq u$. This means that $u$ is semiconvex: $D^2 u \geq -C I$.

Interpolating the semiconvexity and $L^\infty$ boundedness of $u$, we obtain that $(-\Delta)^s u \leq C$ for some constant $C$.

The boundedness of $(-\Delta)^s u$ does not imply that $u \in C^{2s}$ but it does imply that $u \in C^\alpha$ for all $\alpha < s$.

  • $C^{2s+\alpha}$ regularity, for some small $\alpha>0$

Let $w(x) = (-\Delta)^s u(x)$. A key observation is that the function $w$ satisfies the equation \begin{align} (-\Delta)^{1-s} w &= -\Delta \varphi \qquad \text{in } \{u=\varphi\}, \\ w &= 0 \qquad \text{outside } \{u=\varphi\}. \end{align}

This is a Dirichlet problem for the conjugate fractional Laplacian. However there are two difficulties. First of all we need to prove that $w$ is continuous on the boundary $\partial \{u=\varphi\}$. Second, this boundary can be highly irregular a priori so we cannot expect to obtain any H\"older continuity of $w$ from the Dirichlet problem alone.

From the semiconvexity of $u$ we have $-\Delta u \leq C$, and therefore we derive the extra condition $(-\Delta)^{1-s} w \leq C$ in the full space $\R^d$ (in particular across the boundary $\partial \{u=\varphi\}$). Moreover, we also know that $w \geq 0$ everywhere.

The $C^\alpha$ Holder continuity of $w$ on the boundary $\partial \{u=\varphi\}$ is obtained from an iterative improvement of oscillation procedure. Since $w \geq 0$ and $(-\Delta)^{1-s} u \leq C$, for any $x_0$ on $\partial \{u=\varphi\}$ we can show that $\max_{B_r(x_0)} w$ decays provided that $\{u > \varphi\} \cap B_r$ is sufficiently "thick" using the weak Harnack inequality. We cannot rule out the case in which $\{u > \varphi\} \cap B_r$ has a very small measure. However, in the case that $\{u > \varphi\} \cap B_r$ is too small in measure, we can prove that $u$ separates very slowly from $\varphi$. This slow separation is used to prove that $w$ must also improve its oscillation and this step is particularly tricky [1].

Once we know that $w(x) = (-\Delta)^s u(x)$ is $C^\alpha$, this implies that $u \in C^{2s+\alpha}$ by classical potential analysis theory.

  • $C^{1,s}$ regularity

If the contact set $\{u=\varphi\}$ is convex or at least has an exterior ball condition, a fairly simple barrier function can be constructed to show that $w$ must be $C^{1-s}$ on the boundary $\partial \{u=\varphi\}$. This is the generic boundary regularity for solutions of fractional Laplace equations in smooth domains.

Without assuming anything on the contact set $\{u=\varphi\}$, one can still obtain that $w \in C^\alpha$ for every $\alpha < 1-s$ through an iterative use of barrier functions [1]. The sharp $w \in C^{1-s}$ regularity in full generality was obtained rewriting the equation as a thin obstacle problem using the extension technique and then applying blowup techniques, the Almgren monotonicity formula and classification of global solutions [2].

The $C^{1-s}$ regularity of $w$ implies that $u \in C^{1,s}$ by classical potential analysis.

Regularity of the free boundary

A regular point of the free boundary is where the solution $u$ is exactly $C^{1,s}$ an no better. This is classified explicitly in terms of the limits of the Almgren frequency formula [2]. Around any regular point, the free boundary is a smooth $C^{1,\alpha}$ surface [2].

A singular point is defined as a point on the free boundary where the measure of the contact set has vanishing density. More precisely, if \[ \lim_{r \to 0} \frac{|\{u=\varphi\} \cap B_r|}{r^n} = 0.\]

In the case $s=1/2$, it was shown by Nicola Garofalo and Arshak Petrosyan [3] that the singular points of the free boundary are contained inside a differentiable surface. The proof is done in the context of the thin obstacle problem and presumably can be extended to other powers of the Laplacian using the extension technique.

It is important to notice that the definitions of regular and singular points of the free boundary are mutually exclusive but they do not exhaust all possible free boundary points. It is an interesting open problem to understand what other type of free boundary points are possible if any.

The parabolic version

The parabolic version of the fractional obstacle problem was studied by Caffarelli and Figalli [4]. They concluded that the solution $u$ has the following regularity estimates. \begin{align} u_t, (-\Delta)^s u \in LogLip_t C_x^{1-s}, \text{ if } s\leq 1/3,\\ u_t, (-\Delta)^s u \in C_{t,x}^{\frac{1-s}{2s},{1-s}}, \text{ if } s > 1/3. \end{align}

It turns out that it is crucial to consider solutions $u$ to be non decreasing in time (which is assured by taking the initial value coinciding with the obstacle). Otherwise the regularity of the solution is reduced to merely $C^{2s}$ in space.

The regularity of the free boundary has not been explored in the parabolic setting yet.

References

  1. 1.0 1.1 Silvestre, Luis (2007), "Regularity of the obstacle problem for a fractional power of the Laplace operator", Communications on Pure and Applied Mathematics (Wiley Online Library) 60 (1): 67–112, ISSN 0010-3640 
  2. 2.0 2.1 2.2 Caffarelli, Luis A.; Salsa, Sandro; Silvestre, Luis (2008), "Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian", Inventiones Mathematicae 171 (2): 425–461, doi:10.1007/s00222-007-0086-6, ISSN 0020-9910, http://dx.doi.org/10.1007/s00222-007-0086-6 
  3. Petrosyan, A.; Garofalo, N. (2009), "Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem", Inventiones Mathematicae (Berlin, New York: Springer-Verlag) 177 (2): 415–461, ISSN 0020-9910 
  4. Figalli, A.; Caffarelli, Luis (2011), "Regularity of solutions to the parabolic fractional obstacle problem", Arxiv preprint arXiv:1101.5170