De Giorgi-Nash-Moser theorem and Boltzmann equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>Luis
 
Line 1: Line 1:
The De Giorgi-Nash-Moser theorem provides Holder estimates and the Harnack inequality for uniformly elliptic or parabolic equations with rough coefficients in divergence form. The result was first obtained independently by Ennio De Giorgi <ref name="DG"/> and John Nash <ref name="N"/>. Later, a different proof was given by Jurgen Moser <ref name="M"/>.
{{stub}}


The equation is
The Boltzmann equation is a nonlinear evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography <ref name="Bal2009"/>
\[ \mathrm{div} A(x) \nabla u(x) = \partial_i a_{ij}(x) \partial_j u(x) = 0, \]
in the elliptic case, or
\[ u_t = \mathrm{div} A(x,t) \nabla u(x). \]
Here $A = \{a_{ij}\}$ is a matrix valued function in $L^\infty$ satisfying the uniform ellipticity condition for some $\lambda>0$,
\[ \langle A v,v \rangle \geq \lambda |v|^2,\]
for every $v \in \R^n$, uniformly in space and time.


The corresponding result in non divergence form is [[Krylov-Safonov theorem]].
In reality, the Boltzmann equation is not a single equation but a family of equations, where one obtains different equations depending on the nature of the interaction between particles (see below). Although there has been a lot of progress in the analysis of the Cauchy problem under many circumstances, the broad understanding of the equation and the dynamics of its solutions remains largely incomplete. For an overview of the mathematical issues revolving around this equation see for instance <ref name="Vil2002"/>. A basic reference is also <ref name="CerIllPul1994"/>.


For nonlocal equations, there are analogous results both for [[Holder estimates]] and the [[Harnack inequality]].
== The classical Boltzmann equation ==


== Elliptic version ==
As explained originally by Boltzmann in the probabilistic description of a gas, we assume that the probability that a particle in a gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by some function
For the result in the elliptic case, we assume that the equation
\[ \mathrm{div} A(x) \nabla u(x) = 0 \]
is satisfied in the unit ball $B_1$ of $\R^n$.
===Holder estimate===
The Holder estimate says that if $u$ is an $L^2$ solution to a uniformly elliptic divergence form equation as above, then $u$ is Holder continuous in $B_{1/2}$ and
\[ ||u||_{C^\alpha(B_{1/2})} \leq C ||u||_{L^2(B_1)}.\]
The constants $C$ and $\alpha>0$ depend on $n$ (dimension), $\lambda$ and $||A||_{L^\infty}$.


The result can be scaled to balls of arbitrary radius $r>0$ to obtain
\begin{equation*}
\[ [u]_{C^\alpha(B_{r/2})} \leq C \frac{||u||_{L^2(B_r)}}{r^\alpha}.\]
\int_A f(x,v,t)dxdy.
\end{equation*}


Moreover, by covering an arbitrary domain $\Omega$ with balls, one can show that a solution to the equation in $\Omega$ is $C^\alpha$ in the interior of $\Omega$.
Then, under certain (natural) physical assumptions, Boltzmann derived an evolution equation for $f(x,v,t)$. In particular, if one imposes $f$ at time $t=0$ then $f$ should  solve the  Cauchy problem


===Harnack inequality===
\begin{equation}\label{eqn: Cauchy problem}\tag{1}
The [[Harnack inequality]] says that if $u$ is a non negative solution of the equation in $B_1$, then its minimum controls its maximum in $B_{1/2}$:
\left \{ \begin{array}{rll}
\[ \max_{B_{1/2}} u \leq C \min_{B_{1/2}} u.\]
\partial_t f + v \cdot \nabla_x f  & = Q(f,f) & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+,\\
The constant $C$ depends on $n$, $\lambda$ and $||A||_{L^\infty}$ only.
f  & = f_0 & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \{ 0 \}.
\end{array}\right.
\end{equation}


===Minimizers of convex functionals===
where $Q(f,f)$ is the Boltzmann collision operator, a non-local operator given by
The theorem of De Giorgi, Nash and Moser was used originally to solve one of the famous Hilbert problems. The question was whether the minimizers of Dirichlet integrals
\[ J(u) := \int_{\Omega} F(\nabla u) \mathrm{d} x,\]
are always smooth if $F$ is smooth and strictly convex. The theorem of De Giorgi-Nash-Moser in its elliptic form can be applied to the differential quotients of the minimizer of $J$ to show that the solution is $C^{1,\alpha}$. Once that initial regularity is obtained, further regularity follows by [[bootstrapping]] with the [[Schauder estimates]] and the smoothness of $F$.


Note that in order to apply the theorem to these nonlinear equations, it is very important that no smoothness assumption on the coefficients $A(x)$ is made.
\begin{equation*}
Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*.
\end{equation*}


== Parabolic version ==
here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write
For the result in the parabolic case, we assume that the equation
\[ u_t - \mathrm{div} A(x) \nabla u(x) = 0 \]
is satisfied in the unit cylinder $(0,1] \times B_1$ of $\R \times \R^n$.
===Holder estimate===
The Holder estimate says that if $u$ is an $L^2$ solution to a uniformly elliptic divergence form equation as above, then $u$ is Holder continuous in $[1/2,1] \times B_{1/2}$ and
\[ ||u||_{C^\alpha([1/2,1] \times B_{1/2})} \leq C ||u||_{L^2([0,1] \times B_1)}.\]
The constants $C$ and $\alpha>0$ depend on $n$ (dimension), $\lambda$ and $||A||_{L^\infty}$.


===Harnack inequality===
\begin{align*}
The [[Harnack inequality]] says that if $u$ is a non negative solution of the equation in $[0,1] \times B_1$, then its minimum controls its maximum in a previous time:
v'  & = v-(v-v_*,e)e\\
\[ \sup_{[1/4,1/2] \times B_{1/2}} u \leq \inf_{[3/4,1] \times B_{1/2}} u. \]
v'_* & = v_*+(v-v_*,e)e
\end{align*}
 
and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.
 
== Collision Invariants ==  
 
The Cauchy problem \ref{eqn: Cauchy problem} enjoys several conservation laws, which in the Boltzmann literature are known as collision invariants. Take $\phi(v)$ to be any of the following functions
 
\begin{equation*}
\phi(v) = 1, \;\;v,\;\; \tfrac{|v|^2}{2}
\end{equation*}
\begin{equation*}
\text{(the first and  third ones are real valued functions, the second one is vector valued)}
\end{equation*}
 
and let $f(x,v,t)$ be any classical solution to \ref{eqn: Cauchy problem}, then we have
 
\begin{equation*}
\frac{d}{dt}\int_{\mathbb{R}^d\times \mathbb{R}^d} f(x,v,t) \phi(v)\;dx\;dv = 0
\end{equation*}
 
according to what $\phi$ we pick this equation corresponds to  conservation of mass, conservation momentum or conservation of energy.
 
== The Landau Equation ==
 
A closely related evolution equation is the [[Landau equation]]. For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,
 
\begin{equation*}
f_t + x\cdot \nabla_y f = Q_{L}(f,f)
\end{equation*}
 
where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as
 
\begin{equation*}
Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2
\end{equation*}
 
where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$.  
 
 
Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument).


===Gradient flows===
The parabolic version of the theory can be used to show that the solutions to gradient flow equations with strictly convex energies are smooth.
\[ u_t + \partial_u J[u] = u_t - \mathrm{div} \left( (\partial_i F)(\nabla u) \partial_i u \right) = 0.\]
The idea of the proof is that the derivatives of $u$ (or its differential quotients) satisfy an equation with rough but uniformly elliptic coefficients.
== References ==
== References ==
{{reflist|refs=
{{reflist|refs=
<ref name="DG">{{Citation | last1=De Giorgi | first1=Ennio | title=Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari | year=1957 | journal=Memorie della Accademia delle Scienze di Torino. Classe di Scienze Fisiche, Matematicahe e Naturali. (3) | volume=3 | pages=25–43}}</ref>
 
<ref name="N">{{Citation | last1=Nash | first1=John | author1-link=John Forbes Nash | title=Parabolic equations | year=1957 | journal=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] | issn=0027-8424 | volume=43 | pages=754–758}}</ref>
<ref name="Bal2009">{{Citation | last1=Bal | first1=G. | title=Inverse transport theory and applications | publisher=IOP Publishing | year=2009 | journal=Inverse Problems | volume=25 | issue=5 | pages=053001}}</ref>
<ref name="M">{{Citation | last1=Moser | first1=Jürgen | title=A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations | year=1960 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=13 | pages=457–468}}</ref>
 
<ref name="Vil2002">{{Citation | last1=Villani | first1=C. | title=A review of mathematical topics in collisional kinetic theory | publisher=[[Elsevier]] | year=2002 | journal=Handbook of mathematical fluid dynamics | volume=1 | pages=71–74}}</ref>
 
<ref name="CerIllPul1994">{{Citation | last1=Cercignani | first1=Carlo | last2=Illner | first2=R. | last3=Pulvirenti | first3=M. | title=The Mathematical Theory of Dilute Gases (Applied Mathematical Sciences vol 106) | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=1994}}</ref>
}}
}}

Revision as of 20:11, 18 October 2013

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is a nonlinear evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography [1]

In reality, the Boltzmann equation is not a single equation but a family of equations, where one obtains different equations depending on the nature of the interaction between particles (see below). Although there has been a lot of progress in the analysis of the Cauchy problem under many circumstances, the broad understanding of the equation and the dynamics of its solutions remains largely incomplete. For an overview of the mathematical issues revolving around this equation see for instance [2]. A basic reference is also [3].

The classical Boltzmann equation

As explained originally by Boltzmann in the probabilistic description of a gas, we assume that the probability that a particle in a gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by some function

\begin{equation*} \int_A f(x,v,t)dxdy. \end{equation*}

Then, under certain (natural) physical assumptions, Boltzmann derived an evolution equation for $f(x,v,t)$. In particular, if one imposes $f$ at time $t=0$ then $f$ should solve the Cauchy problem

\begin{equation}\label{eqn: Cauchy problem}\tag{1} \left \{ \begin{array}{rll} \partial_t f + v \cdot \nabla_x f & = Q(f,f) & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+,\\ f & = f_0 & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \{ 0 \}. \end{array}\right. \end{equation}

where $Q(f,f)$ is the Boltzmann collision operator, a non-local operator given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*. \end{equation*}

here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Collision Invariants

The Cauchy problem \ref{eqn: Cauchy problem} enjoys several conservation laws, which in the Boltzmann literature are known as collision invariants. Take $\phi(v)$ to be any of the following functions

\begin{equation*} \phi(v) = 1, \;\;v,\;\; \tfrac{|v|^2}{2} \end{equation*} \begin{equation*} \text{(the first and third ones are real valued functions, the second one is vector valued)} \end{equation*}

and let $f(x,v,t)$ be any classical solution to \ref{eqn: Cauchy problem}, then we have

\begin{equation*} \frac{d}{dt}\int_{\mathbb{R}^d\times \mathbb{R}^d} f(x,v,t) \phi(v)\;dx\;dv = 0 \end{equation*}

according to what $\phi$ we pick this equation corresponds to conservation of mass, conservation momentum or conservation of energy.

The Landau Equation

A closely related evolution equation is the Landau equation. For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,

\begin{equation*} f_t + x\cdot \nabla_y f = Q_{L}(f,f) \end{equation*}

where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as

\begin{equation*} Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2 \end{equation*}

where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$.


Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument).

References

  1. Bal, G. (2009), "Inverse transport theory and applications", Inverse Problems (IOP Publishing) 25 (5): 053001 
  2. Villani, C. (2002), "A review of mathematical topics in collisional kinetic theory", Handbook of mathematical fluid dynamics (Elsevier) 1: 71–74 
  3. Cercignani, Carlo; Illner, R.; Pulvirenti, M. (1994), The Mathematical Theory of Dilute Gases (Applied Mathematical Sciences vol 106), Berlin, New York: Springer-Verlag