Dirichlet form and Boltzmann equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Luis
 
Line 1: Line 1:
$$
{{stub}}
\newcommand{\dd}{\mathrm{d}}
 
\newcommand{\R}{\mathbb{R}}
The Boltzmann equation is a nonlinear evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography <ref name="Bal2009"/>
$$
 
In reality, the Boltzmann equation is not a single equation but a family of equations, where one obtains different equations depending on the nature of the interaction between particles (see below). Although there has been a lot of progress in the analysis of the Cauchy problem under many circumstances, the broad understanding of the equation and the dynamics of its solutions remains largely incomplete. For an overview of the mathematical issues revolving around this equation see for instance <ref name="Vil2002"/>. A basic reference is also <ref name="CerIllPul1994"/>.


A Dirichlet form in $\mathbb{R}^n$ is a bilinear function
== The classical Boltzmann equation ==
 
As explained originally by Boltzmann in the probabilistic description of a gas, we assume that the probability that a particle in a gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by some function


\begin{equation*}
\begin{equation*}
\mathcal{E}: D\times D \to \mathbb{R}
\int_A f(x,v,t)dxdy.
\end{equation*}
\end{equation*}


with the following properties
Then, under certain (natural) physical assumptions, Boltzmann derived an evolution equation for $f(x,v,t)$. In particular,  if one imposes $f$ at time $t=0$ then $f$ should  solve the Cauchy problem


1) The domain $D$ is a dense subset of $L^2(\mathbb{R}^n)$
\begin{equation}\label{eqn: Cauchy problem}\tag{1}
\left \{ \begin{array}{rll}
\partial_t f + v \cdot \nabla_x f  & = Q(f,f) & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+,\\
f  & = f_0 & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \{ 0 \}.
\end{array}\right.
\end{equation}


2) $\mathcal{E}$ is symmetric, that is $\mathcal{E}(u,v)=\mathcal{E}(v,u)$ for any $u,v \in D$.
where $Q(f,f)$ is the Boltzmann collision operator, a non-local operator given by


3) $\mathcal{E}(u,u) \geq 0$ for any $u \in D$.
\begin{equation*}
Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*.
\end{equation*}


4) The set $D$ equipped with the inner product defined by $(u,v)_{\mathcal{E}} := (u,v)_{L^2(\mathbb{R}^n)} + \mathcal{E}(u,v)$ is a real Hilbert space.
here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write


5) For any $u \in D$ we have that $u_* = (u\vee 0) \wedge 1 \in D$ and $\mathcal{E}(u_*,u_*)\leq \mathcal{E}(u,u)$
\begin{align*}
v'  & = v-(v-v_*,e)e\\
v'_* & = v_*+(v-v_*,e)e
\end{align*}


and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.


In other words, a Dirichlet form is nothing but a positive symmetric bilinear form defined in a dense subset of $L^2(\mathbb{R}^n)$ such that 4) and 5) hold. Alternatively, the quadratic form $u \to \mathcal{E}(u,u)$ itself is known as the Dirichlet form and it is still denoted by $\mathcal{E}$, so $\mathcal{E}(u):=\mathcal{E}(u,u)$.
== Collision Invariants ==
 
The Cauchy problem \ref{eqn: Cauchy problem} enjoys several conservation laws, which in the Boltzmann literature are known as collision invariants. Take $\phi(v)$ to be any of the following functions


The best known Dirichlet form is the Dirichlet energy
\begin{equation*}
\begin{equation*}
\mathcal{E}(u) = \int_{\mathbb{R}^n} |\nabla u|^2\;dx
\phi(v) = 1, \;\;v,\;\; \tfrac{|v|^2}{2}
\end{equation*}
\end{equation*}
\begin{equation*}
\text{(the first and  third ones are real valued functions, the second one is vector valued)}
\end{equation*}
and let $f(x,v,t)$ be any classical solution to \ref{eqn: Cauchy problem}, then we have


which gives rise to the space $H^1(\mathbb{R}^n)$.  Another example of a Dirichlet form is given by
\begin{equation*}
\begin{equation*}
\mathcal{E}(u) = \iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y
\frac{d}{dt}\int_{\mathbb{R}^d\times \mathbb{R}^d} f(x,v,t) \phi(v)\;dx\;dv = 0
\end{equation*}
\end{equation*}
where $K$ is some non-negative symmetric kernel.


If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$ . If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared and in that case the set $D \subset L^2(\mathbb{R}^n)$ defined above is given by  $H^{s/2}(\mathbb{R}^n)$
according to what $\phi$ we pick this equation corresponds to  conservation of mass, conservation momentum or conservation of energy.
 
== The Landau Equation ==


Then we see that Dirichlet forms are natural generalizations of the Dirichlet integrals
A closely related evolution equation is the [[Landau equation]]. For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,
\\mathcal{E}(u) = \int  (A\nabla u,\nabla u)\; \dd x, \]
 
where $A(x)$ is a positive symmetric matrix. The Euler-Lagrange equation of a Dirichlet form is a non-local analogue  of an elliptic equations in divergence form. Equations of this type are studied using variational methods and they are expected to satisfy similar properties <ref name="BBCK"/><ref name="K"/><ref name="CCV"/>.
\begin{equation*}
f_t + x\cdot \nabla_y f = Q_{L}(f,f)
\end{equation*}
 
where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as
 
\begin{equation*}
Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2
\end{equation*}
 
where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$.
 
 
Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument).


== References ==
== References ==
(There should be a lot more references here)
{{reflist|refs=
{{reflist|refs=
<ref name="CCV">{{Citation | last1=Caffarelli | first1=Luis | last2=Chan | first2=Chi Hin | last3=Vasseur | first3=Alexis | title= | doi=10.1090/S0894-0347-2011-00698-X | year=2011 | journal=[[Journal of the American Mathematical Society]] | issn=0894-0347 | issue=24 | pages=849–869}}</ref>
<ref name="BBCK">{{Citation | last1=Barlow | first1=Martin T. | last2=Bass | first2=Richard F. | last3=Chen | first3=Zhen-Qing | last4=Kassmann | first4=Moritz | title=Non-local Dirichlet forms and symmetric jump processes | url=http://dx.doi.org/10.1090/S0002-9947-08-04544-3 | doi=10.1090/S0002-9947-08-04544-3 | year=2009 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=361 | issue=4 | pages=1963–1999}}</ref>
<ref name="K">{{Citation | last1=Kassmann | first1=Moritz | title=A priori estimates for integro-differential operators with measurable kernels | url=http://dx.doi.org/10.1007/s00526-008-0173-6 | doi=10.1007/s00526-008-0173-6 | year=2009 | journal=Calculus of Variations and Partial Differential Equations | issn=0944-2669 | volume=34 | issue=1 | pages=1–21}}</ref>
}}


<ref name="Bal2009">{{Citation | last1=Bal | first1=G. | title=Inverse transport theory and applications | publisher=IOP Publishing | year=2009 | journal=Inverse Problems | volume=25 | issue=5 | pages=053001}}</ref>
<ref name="Vil2002">{{Citation | last1=Villani | first1=C. | title=A review of mathematical topics in collisional kinetic theory | publisher=[[Elsevier]] | year=2002 | journal=Handbook of mathematical fluid dynamics | volume=1 | pages=71–74}}</ref>


{{stub}}
<ref name="CerIllPul1994">{{Citation | last1=Cercignani | first1=Carlo | last2=Illner | first2=R. | last3=Pulvirenti | first3=M. | title=The Mathematical Theory of Dilute Gases (Applied Mathematical Sciences vol 106) | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=1994}}</ref>
}}

Revision as of 20:11, 18 October 2013

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is a nonlinear evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography [1]

In reality, the Boltzmann equation is not a single equation but a family of equations, where one obtains different equations depending on the nature of the interaction between particles (see below). Although there has been a lot of progress in the analysis of the Cauchy problem under many circumstances, the broad understanding of the equation and the dynamics of its solutions remains largely incomplete. For an overview of the mathematical issues revolving around this equation see for instance [2]. A basic reference is also [3].

The classical Boltzmann equation

As explained originally by Boltzmann in the probabilistic description of a gas, we assume that the probability that a particle in a gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by some function

\begin{equation*} \int_A f(x,v,t)dxdy. \end{equation*}

Then, under certain (natural) physical assumptions, Boltzmann derived an evolution equation for $f(x,v,t)$. In particular, if one imposes $f$ at time $t=0$ then $f$ should solve the Cauchy problem

\begin{equation}\label{eqn: Cauchy problem}\tag{1} \left \{ \begin{array}{rll} \partial_t f + v \cdot \nabla_x f & = Q(f,f) & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+,\\ f & = f_0 & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \{ 0 \}. \end{array}\right. \end{equation}

where $Q(f,f)$ is the Boltzmann collision operator, a non-local operator given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*. \end{equation*}

here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Collision Invariants

The Cauchy problem \ref{eqn: Cauchy problem} enjoys several conservation laws, which in the Boltzmann literature are known as collision invariants. Take $\phi(v)$ to be any of the following functions

\begin{equation*} \phi(v) = 1, \;\;v,\;\; \tfrac{|v|^2}{2} \end{equation*} \begin{equation*} \text{(the first and third ones are real valued functions, the second one is vector valued)} \end{equation*}

and let $f(x,v,t)$ be any classical solution to \ref{eqn: Cauchy problem}, then we have

\begin{equation*} \frac{d}{dt}\int_{\mathbb{R}^d\times \mathbb{R}^d} f(x,v,t) \phi(v)\;dx\;dv = 0 \end{equation*}

according to what $\phi$ we pick this equation corresponds to conservation of mass, conservation momentum or conservation of energy.

The Landau Equation

A closely related evolution equation is the Landau equation. For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,

\begin{equation*} f_t + x\cdot \nabla_y f = Q_{L}(f,f) \end{equation*}

where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as

\begin{equation*} Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2 \end{equation*}

where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$.


Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument).

References

  1. Bal, G. (2009), "Inverse transport theory and applications", Inverse Problems (IOP Publishing) 25 (5): 053001 
  2. Villani, C. (2002), "A review of mathematical topics in collisional kinetic theory", Handbook of mathematical fluid dynamics (Elsevier) 1: 71–74 
  3. Cercignani, Carlo; Illner, R.; Pulvirenti, M. (1994), The Mathematical Theory of Dilute Gases (Applied Mathematical Sciences vol 106), Berlin, New York: Springer-Verlag