Fractional Laplacian and Literature on Nonlocal Equations: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Xavi
 
imported>Nestor
No edit summary
 
Line 1: Line 1:
The fractional Laplacian $(-\Delta)^s$ is a classical operator which gives the standard Laplacian when $s=1$. One can think of $-(-\Delta)^s$ as the most basic  [[elliptic linear integro-differential operator]] of order $2s$ and can be defined in several equivalent ways (listed below). A range of powers of particular interest is $s \in (0,1)$, in which case for $u \in \mathcal{S}(\mathbb{R}^n)$ we can write the operator as
== 2011 ==


\[-(-\Delta)^su(x) = c_{n,s} \int_{\mathbb{R}^d}\frac{\delta u (x,y) }{|y|^{d+2s}}dy\]
{{Citation | last1=Barles | first1=Guy | last2=Chasseigne | first2=Emmanuel | last3=Imbert | first3=Cyril | title=Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations | url=http://dx.doi.org/10.4171/JEMS/242 | doi=10.4171/JEMS/242 | year=2011 | journal=Journal of the European Mathematical Society (JEMS) | issn=1435-9855 | volume=13 | issue=1 | pages=1–26}}


where $c_{n,s}$ is a universal constant and $\delta u(x,y):= u(x+y)+u(x-y)-2u(x)$. This particular expression shows that in this range of $s$ the operator enjoys the following monotonicity property: if $u$ has a global maximum at $x$, then $(-\Delta)^s u(x) \geq 0$, with equality only if $u$ is constant. From this monotonicity, a [[comparison principle]] can be derived for equations involving the fractional Laplacian.
{{Citation | last3=Rosado | first3=Jesus | last2=Laurent | first2=Thomas | last1=Bertozzi | first1=Andrea | title=Lp theory for the multidimensional aggregation equation | doi=10.1002/cpa.20334 | year=2011 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=64 | issue=1 | pages=45–83}}


== Definitions ==
{{Citation | last1=Silvestre | first1=Luis | title=On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion | url=http://dx.doi.org/10.1016/j.aim.2010.09.007 | doi=10.1016/j.aim.2010.09.007 | year=2011 | journal=Advances in Mathematics | issn=0001-8708 | volume=226 | issue=2 | pages=2020–2039}}


All the definitions below are equivalent.
== 2010 ==


=== As a pseudo-differential operator ===
{{Citation | last1=Biler | first1=Piotr | last2=Monneau | first2=Régis | last3=Karch | first3=Grzegorz | title=Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions | doi=10.1007/s00220-009-0855-8 | year=2009 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=294 | issue=1 | pages=145–168}}
The fractional Laplacian is the pseudo-differential operator with symbol $|\xi|^{2s}$. In other words, the following formula holds
\[ \widehat{(-\Delta)^s f}(\xi) = |\xi|^{2s} \hat f(\xi).\]
for any function (or tempered distribution) for which the right hand side makes sense.


This formula is the simplest to understand and it is useful for problems in the whole space. On the other hand, it is hard to obtain local estimates from it.
== 2009==


=== From functional calculus ===
{{Citation | last1=Barlow | first1=Martin T. | last2=Bass | first2=Richard F. | last3=Chen | first3=Zhen-Qing | last4=Kassmann | first4=Moritz | title=Non-local Dirichlet forms and symmetric jump processes | url=http://dx.doi.org/10.1090/S0002-9947-08-04544-3 | doi=10.1090/S0002-9947-08-04544-3 | year=2009 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=361 | issue=4 | pages=1963–1999}}
Since the operator $-\Delta$ is a self-adjoint positive definite operator in a dense subset $D$ of $L^2(\R^n)$, one can define $F(-\Delta)$ for any continuous function $F:\R^+ \to \R$. In particular, this serves as a more or less abstract definition of $(-\Delta)^s$.


This definition is not as useful for practical applications, since it does not provide any explicit formula.
{{Citation | last1=Constantin | first1=Peter | last2=Wu | first2=Jiahong | title=Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations | url=http://dx.doi.org/10.1016/j.anihpc.2007.10.002 | doi=10.1016/j.anihpc.2007.10.002 | year=2009 | journal=Annales de l'Institut Henri Poincaré. Analyse Non Linéaire | issn=0294-1449 | volume=26 | issue=1 | pages=159–180}}


=== As a singular integral ===
{{Citation | last1=Kassmann | first1=Moritz | title=A priori estimates for integro-differential operators with measurable kernels | url=http://dx.doi.org/10.1007/s00526-008-0173-6 | doi=10.1007/s00526-008-0173-6 | year=2009 | journal=Calculus of Variations and Partial Differential Equations | issn=0944-2669 | volume=34 | issue=1 | pages=1–21}}
If $f$ is regular enough and $s \in (0,1)$, $(-\Delta)^s f(x)$ can be computed by the formula
\[ (-\Delta)^s f(x) = c_{n,s} \int_{\R^n} \frac{f(x) - f(y)} {|x-y|^{n+2s}} \mathrm d y .\]


Where $c_{n,s}$ is a constant depending on dimension and $s$.
{{Citation | last1=Kiselev | first1=A. | last2=Nazarov | first2=F. | title=A variation on a theme of Caffarelli and Vasseur | year=2009 | journal=Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheski\u\i Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) | issn=0373-2703 | volume=370 | pages=58–72}}


This formula is the most useful to study local properties of equations involving the fractional Laplacian and regularity for critical semilinear problems.
== 2008 ==


=== As a generator of a [[Levy process]] ===
{{Citation | last1=Barles | first1=G. | last2=Chasseigne | first2=Emmanuel | last3=Imbert | first3=Cyril | title=On the Dirichlet problem for second-order elliptic integro-differential equations | url=http://dx.doi.org/10.1512/iumj.2008.57.3315 | doi=10.1512/iumj.2008.57.3315 | year=2008 | journal=Indiana University Mathematics Journal | issn=0022-2518 | volume=57 | issue=1 | pages=213–246}}
The operator can be defined as the generator of $\alpha$-stable Lévy processes. More precisely, if $X_t$ is the isotropic $\alpha$-stable Lévy process starting at zero and $f$ is a smooth function, then
\[ (-\Delta)^{\alpha/2} f(x) = \lim_{h \to 0^+} \frac 1 {h} \mathbb E [f(x) - f(x+X_h)]. \]


This definition is important for applications to probability.
{{Citation | last1=Barles | first1=Guy | last2=Imbert | first2=Cyril | title=Second-order elliptic integro-differential equations: viscosity solutions' theory revisited | url=http://dx.doi.org/10.1016/j.anihpc.2007.02.007 | doi=10.1016/j.anihpc.2007.02.007 | year=2008 | journal=Annales de l'Institut Henri Poincaré. Analyse Non Linéaire | issn=0294-1449 | volume=25 | issue=3 | pages=567–585}}


== Inverse operator ==
{{Citation | last1=Caffarelli | first1=Luis | last2=Salsa | first2=Sandro | last3=Silvestre | first3=Luis | title=Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian | url=http://dx.doi.org/10.1007/s00222-007-0086-6 | doi=10.1007/s00222-007-0086-6 | year=2008 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=171 | issue=2 | pages=425–461}}
The inverse of the $s$ power of the Laplacian is the $-s$ power of the Laplacian $(-\Delta)^{-s}$. For $0<s<n/2$, there is an integral formula which says that $(-\Delta)^{-s}u$ is the convolution of the function $u$ with the ''Riesz potential'':
\[ (-\Delta)^{-s} u(x) = C_{n,s} \int_{\R^n} u(x-y) \frac{1}{|y|^{n-2s}} \mathrm d y,\]
which holds as long as $u$ is integrable enough for the right hand side to make sense.


== Heat kernel ==
== 2007 ==
The fractional heat kernel $p(t,x)$ is the fundamental solution to the [[fractional heat equation]]. It is the function which solves the equation
\begin{align*}
p(0,x) &= \delta_0 \\
p_t(t,x) + (-\Delta)^s p &= 0
\end{align*}


The kernel is easy to compute in Fourier side as $\hat p(t,\xi) = e^{-t|\xi|^{2s}}$. There is no explicit formula in physical variables, but the following inequalities are known to hold for some constant $C$
{{Citation | last1=Bogdan | first1=Krzysztof | last2=Jakubowski | first2=Tomasz | title=Estimates of heat kernel of fractional Laplacian perturbed by gradient operators | url=http://dx.doi.org/10.1007/s00220-006-0178-y | doi=10.1007/s00220-006-0178-y | year=2007 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=271 | issue=1 | pages=179–198}}
\[ C^{-1} \left( t^{-\frac n {2s}} \wedge \frac{t}{|x|^{n+2s}} \right) \leq p(t,x) \leq C \left( t^{-\frac n {2s}} \wedge \frac{t}{|x|^{n+2s}} \right). \]


Moreover, the function $p$ is $C^\infty$ in $x$ for $t>0$ and the following identity follows by scaling
{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=An extension problem related to the fractional Laplacian | url=http://dx.doi.org.ezproxy.lib.utexas.edu/10.1080/03605300600987306 | doi=10.1080/03605300600987306 | year=2007 | journal=Communications in Partial Differential Equations | issn=0360-5302 | volume=32 | issue=7 | pages=1245–1260}}
\[ p(t,x) = t^{-\frac n {2s}} p \left( 1 , t^{-\frac 1 {2s}} x \right). \]


== Poisson kernel ==
== 2005 ==
Given a function $g : \R^n \setminus B_1 \to \R$, there exists a unique function $u$ which solves the Dirichlet problem
\begin{align*}
u(x) &= g(x) \qquad \text{if } x \notin B_1 \\
(-\Delta)^s u(x) &= 0 \qquad \text{if } x \in B_1.
\end{align*}


The solution can be computed explicitly using the Poisson kernel
{{Citation | last1=Bass | first1=Richard F. | last2=Kassmann | first2=Moritz | title=Harnack inequalities for non-local operators of variable order | url=http://dx.doi.org/10.1090/S0002-9947-04-03549-4 | doi=10.1090/S0002-9947-04-03549-4 | year=2005 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=357 | issue=2 | pages=837–850}}
\[ u(x) = \int_{\R^n \setminus B_1} g(y) P(y,x) \mathrm d y,\]
where<ref name="R"/>
\[ P(y,x) = C_{n,s} \left( \frac{1-|x|^2}{|y|^2-1}\right)^s \frac 1 {|x-y|^n}.\]


The justification of this Poisson kernel can be found in the classical book of Landkof (1.6.11')<ref name="L"/>.
== 2002 ==


== Green's function for the ball ==
{{Citation | last1=Bass | first1=Richard F. | last2=Levin | first2=David A. | title=Harnack inequalities for jump processes | url=http://dx.doi.org/10.1023/A:1016378210944 | doi=10.1023/A:1016378210944 | year=2002 | journal=Potential Analysis. An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis | issn=0926-2601 | volume=17 | issue=4 | pages=375–388}}
For a function $g \in L^2(B_1)$, there exists a unique function $u \in H^s(\R^n)$ such that
\begin{align*}
u(x) &= 0 && \text{if } x \notin B_1 \\
(-\Delta)^s u &= g(x) && \text{if } x \in B_1.
\end{align*}
 
The solution is given explicitly using the Green's function,
\[ u(x) = \int_{B_1} G_{B_1}(x, y) g(y) \mathrm d y, \]
where<ref name="R"/>
\[ G_{B_1}(x, y) = C_{n,s} |x - y|^{2 s - n} \int_0^{r_0(x, y)} \frac{r^{s-1}}{(r+1)^{n/2}} \, \mathrm d r \]
with
\[ r_0(x, y) = \frac{(1 - |x|^2) (1 - |y|^2)}{|x - y|^2} . \]
The above formula holds for all $s \in (0, 1)$ also for $n = 1$.<ref name="BGR"/>
 
== Regularity issues ==
Any function $u$ which satisfies $(-\Delta)^s u=0$ in any open set $\Omega$, then $u \in C^\infty$ inside $\Omega$. This follows from the smoothness of the Poisson kernel for balls.
 
More generally, one has the estimate
\[\|u\|_{C^{\alpha+2s}(B_{1/2})}\leq C\left(
\|(-\Delta)^s u\|_{C^{\alpha}(B_1)}+\|u\|_{L^{\infty}(B_1)}+\int_{\R^n\setminus B_1}|u(y)|\frac{dy}{|y|^{n+2s}}\right)\]
for any $\alpha\geq0$ such that $\alpha+2s$ is not an integer.
 
=== Full space regularization of the Riesz potential ===
If $(-\Delta)^s u = f$ in $\R^n$, then of course $u = (-\Delta)^{-s}f$. It is simple to see that the operator $(-\Delta)^{-s}$ regularizes the functions ''up to $2s$ derivatives''. In Fourier side, $\hat u(\xi) = |\xi|^{-2s} \hat f(\xi)$, thus $\hat u$ has a stronger decay than $\hat f$. More precisely, if $f \in C^\alpha$, then $u \in C^{2s+\alpha}$ as long as $2s+\alpha$ is not an integer (A proof of this using only the integral representation of $(-\Delta)^{-s}$ was given in the preliminaries section of <ref name="S"/>, but the result is presumably very classical). More generally, if $f$ belongs to the Besov space $B_{p,q}^r$, then $u \in B_{p,q}^{r+2s}$, $s>0$. However, if $f$ belongs to $L^p$ then it does not follow that $u\in W^{2s,p}$; this is true only for $p\geq2$. For $1<p<2$ one only have $u\in B^{2s}_{p,2}\supset W^{2s,p}$ ---see Chapter V in Stein<ref name="Stein"/>.
 
=== Boundary regularity ===
From the Poisson formula, one can observe that if the boundary data $g$ of the Dirichlet problem in $B_1$ is bounded and smooth, then $u \in C^s(\overline B_1)$ and in general no better. The singularity of $u$ occurs only on $\partial B_1$, the solution $u$ would be $C^\infty$ in the interior of the unit ball (which is also a consequence of the explicit Poisson kernel).
 
Even if $u$ is not $C^\infty$ up to the boundary, we have the following: consider the solution $u$ to the Dirichlet problem
\[\left\{ \begin{array}{rcll}
(-\Delta)^s u &=&g&\textrm{in }\Omega \\
u&=&0&\textrm{in }\R^n\backslash \Omega.
\end{array}\right.\]
If $\Omega$ is $C^\infty$, then
\[g\in C^\infty(\overline\Omega)\qquad \Longrightarrow \qquad u/d^s\in C^\infty(\overline\Omega),\]
where $d(x)$ is (a smoothed version of) the distance to $\partial\Omega$; see <ref name="Grubb"/> and also <ref name="RS"/>.
 
If $\Omega$ is $C^{2,\alpha}$ and $g$ is $C^\alpha$, then $u/d^s$ is $C^{\alpha+s}$ up to the boundary <ref name="RS-K"/>.
 
Related to this, if $g$ is not bounded but only in $L^p(\Omega)$ then $u\in L^q$ with $q=\frac{np}{n-2ps}$ in case $p<n/(2s)$, while $u\in L^\infty(\Omega)$ in case $p>n/(2s)$ ---see for example Proposition 1.4 in <ref name="RS2"/>.
 
== References ==
{{reflist|refs=
<ref name="BGR">{{Citation | last1=Blumenthal | first1=R. M. | last2=Getoor | first2=R. K. | last3=Ray | first3=D. B. | title=On the distribution of first hits for the symmetric stable processes | url=http://www.jstor.org/stable/1993561 | year=1961 | journal=Trans. Amer. Math. Soc. | issn=0002-9947 | volume=99 | pages=540–554}}</ref>
<ref name="L">{{Citation | last1=Landkof | first1=N. S. | title=Foundations of modern potential theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=1972}}</ref>
<ref name="R">{{Citation | last1=Riesz | first1=M. | title=Intégrales de Riemann-Liouville et potentiels | url=http://acta.fyx.hu/acta/showCustomerArticle.action?id=5634&dataObjectType=article | year=1938 | journal=Acta Sci. Math. Szeged | issn=0001-6969 | volume=9 | issue=1 | pages=1–42}}</ref>
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Regularity of the obstacle problem for a fractional power of the Laplace operator | url=http://dx.doi.org/10.1002/cpa.20153 | doi=10.1002/cpa.20153 | year=2007 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=60 | issue=1 | pages=67–112}}</ref>
<ref name="RS">{{Citation  | last1=Ros-Oton | first1=X. | last2=Serra | first2=J. | title=The Dirichlet problem for the fractional Laplacian: regularity up to the boundary | url=http://arxiv.org/abs/1207.5985 | year=2012 | journal=[[J. Math. Pures Appl.]] | volume=101 | pages=275-302 }}</ref>
<ref name="Stein">{{Citation | last1=Stein | first1=E. | title=Singular Integrals And Differentiability Properties Of Functions | publisher=[[Princeton Mathematical Series]] | year=1970}}</ref>
<ref name="RS2">{{Citation  | last1=Ros-Oton | first1=X. | last2=Serra | first2=J. | title=The extremal solution for the fractional Laplacian | url=http://arxiv.org/abs/1305.2489 | year=2013 | journal=[[Calc. Var. Partial Differential Equations]] | pages=to appear }}</ref>
<ref name="Grubb">{{Citation  | last1=Grubb | first1=G. | title=Fractional Laplacians on domains, a development of Hormander's theory of $mu$-transmission pseudodifferential operators | url=http://arxiv.org/abs/1310.0951 | year=2014 | journal=[[arXiv]] | pages=1-43 }}</ref>
<ref name="RS-K">{{Citation  | last1=Ros-Oton | first1=X. | last2=Serra | first2=J. | title=Boundary regularity for fully nonlinear integro-differential equations | year=2014 | journal=[[preprint arXiv]] }}</ref>
}}

Revision as of 13:26, 22 January 2012

2011

Barles, Guy; Chasseigne, Emmanuel; Imbert, Cyril (2011), "Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations", Journal of the European Mathematical Society (JEMS) 13 (1): 1–26, doi:10.4171/JEMS/242, ISSN 1435-9855, http://dx.doi.org/10.4171/JEMS/242 

Bertozzi, Andrea; Laurent, Thomas; Rosado, Jesus (2011), "Lp theory for the multidimensional aggregation equation", Communications on Pure and Applied Mathematics 64 (1): 45–83, doi:10.1002/cpa.20334, ISSN 0010-3640 

Silvestre, Luis (2011), "On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion", Advances in Mathematics 226 (2): 2020–2039, doi:10.1016/j.aim.2010.09.007, ISSN 0001-8708, http://dx.doi.org/10.1016/j.aim.2010.09.007 

2010

Biler, Piotr; Monneau, Régis; Karch, Grzegorz (2009), "Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions", Communications in Mathematical Physics 294 (1): 145–168, doi:10.1007/s00220-009-0855-8, ISSN 0010-3616 

2009

Barlow, Martin T.; Bass, Richard F.; Chen, Zhen-Qing; Kassmann, Moritz (2009), "Non-local Dirichlet forms and symmetric jump processes", Transactions of the American Mathematical Society 361 (4): 1963–1999, doi:10.1090/S0002-9947-08-04544-3, ISSN 0002-9947, http://dx.doi.org/10.1090/S0002-9947-08-04544-3 

Constantin, Peter; Wu, Jiahong (2009), "Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations", Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 26 (1): 159–180, doi:10.1016/j.anihpc.2007.10.002, ISSN 0294-1449, http://dx.doi.org/10.1016/j.anihpc.2007.10.002 

Kassmann, Moritz (2009), "A priori estimates for integro-differential operators with measurable kernels", Calculus of Variations and Partial Differential Equations 34 (1): 1–21, doi:10.1007/s00526-008-0173-6, ISSN 0944-2669, http://dx.doi.org/10.1007/s00526-008-0173-6 

Kiselev, A.; Nazarov, F. (2009), "A variation on a theme of Caffarelli and Vasseur", Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheski\u\i Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) 370: 58–72, ISSN 0373-2703 

2008

Barles, G.; Chasseigne, Emmanuel; Imbert, Cyril (2008), "On the Dirichlet problem for second-order elliptic integro-differential equations", Indiana University Mathematics Journal 57 (1): 213–246, doi:10.1512/iumj.2008.57.3315, ISSN 0022-2518, http://dx.doi.org/10.1512/iumj.2008.57.3315 

Barles, Guy; Imbert, Cyril (2008), "Second-order elliptic integro-differential equations: viscosity solutions' theory revisited", Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 25 (3): 567–585, doi:10.1016/j.anihpc.2007.02.007, ISSN 0294-1449, http://dx.doi.org/10.1016/j.anihpc.2007.02.007 

Caffarelli, Luis; Salsa, Sandro; Silvestre, Luis (2008), "Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian", Inventiones Mathematicae 171 (2): 425–461, doi:10.1007/s00222-007-0086-6, ISSN 0020-9910, http://dx.doi.org/10.1007/s00222-007-0086-6 

2007

Bogdan, Krzysztof; Jakubowski, Tomasz (2007), "Estimates of heat kernel of fractional Laplacian perturbed by gradient operators", Communications in Mathematical Physics 271 (1): 179–198, doi:10.1007/s00220-006-0178-y, ISSN 0010-3616, http://dx.doi.org/10.1007/s00220-006-0178-y 

Caffarelli, Luis; Silvestre, Luis (2007), "An extension problem related to the fractional Laplacian", Communications in Partial Differential Equations 32 (7): 1245–1260, doi:10.1080/03605300600987306, ISSN 0360-5302, http://dx.doi.org.ezproxy.lib.utexas.edu/10.1080/03605300600987306 

2005

Bass, Richard F.; Kassmann, Moritz (2005), "Harnack inequalities for non-local operators of variable order", Transactions of the American Mathematical Society 357 (2): 837–850, doi:10.1090/S0002-9947-04-03549-4, ISSN 0002-9947, http://dx.doi.org/10.1090/S0002-9947-04-03549-4 

2002

Bass, Richard F.; Levin, David A. (2002), "Harnack inequalities for jump processes", Potential Analysis. An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis 17 (4): 375–388, doi:10.1023/A:1016378210944, ISSN 0926-2601, http://dx.doi.org/10.1023/A:1016378210944