Fully nonlinear integro-differential equations

From Mwiki

(Difference between revisions)
Jump to: navigation, search
(Abstract definition)
(Another definition)
Line 43: Line 43:
On the other hand, the results in these papers apply to the more general definitions of fully nonlinear integro-differential equations as well. The reason for the restriction to one single integro-differential operator instead of a family $\{L_\alpha\}_\alpha$ seems to be taken only for simplicity.
On the other hand, the results in these papers apply to the more general definitions of fully nonlinear integro-differential equations as well. The reason for the restriction to one single integro-differential operator instead of a family $\{L_\alpha\}_\alpha$ seems to be taken only for simplicity.
}}
}}
 +
 +
{{note|text= In view of the nonlinear version of Courrege theorem given by Guillen and Schwab <ref name="Guillen-Schwab">, both definitions of nonlocal operators coincide, at least when the operator are Frechet differentiable}}
== Examples ==
== Examples ==

Revision as of 21:45, 24 June 2015

Fully nonlinear integro-differential equations are a nonlocal version of fully nonlinear elliptic equations of the form $F(D^2 u, Du, u, x)=0$. The main examples are the integro-differential Bellman equation from optimal control, and the Isaacs equation from stochastic games.

Equations of this type commonly satisfy a comparison principle and have some regularity results.

The general definition of ellipticity provided below does not require a specific form of the equation. However, the main two applications are the two above.

Abstract definition [1][2]

A nonlocal operator is any rule that assigns a value to $Iu(x)$ whenever $u$ is a bounded function in $\mathbb R^n$ that is $C^2$ around the point $x$. The most basic requirement of ellipticity is that whenever $u-v$ achieves a global nonnegative maximum at the point $x$, then \[ Iu(x) \leq Iv(x).\]

We now proceed to define the concept of uniform ellipticity. Given the richness of variations of nonlocal equations, we provide a flexible definition of uniform elliticity depending an arbitrary family of linear operators.

Given a family of linear integro-differential operators $\mathcal{L}$, we define the extremal operators $M^+_\mathcal{L}$ and $M^-_\mathcal{L}$: \begin{align*} M^+_\mathcal{L} u(x) &= \sup_{L \in \mathcal{L}} \, L u(x) \\ M^-_\mathcal{L} u(x) &= \inf_{L \in \mathcal{L}} \, L u(x) \end{align*}

We define a nonlinear operator $I$ to be uniformly elliptic in a domain $\Omega$ with respect to the class $\mathcal{L}$ if it assigns a continuous function $Iu$ to every function $u \in L^\infty(\R^n) \cap C^2(\Omega)$, and moreover for any two such functions $u$ and $v$: \[M^-_\mathcal{L} [u-v](x)\leq Iu(x) - Iv(x) \leq M^+_\mathcal{L} [u-v] (x), \] for any $x \in \Omega$.

A fully nonlinear elliptic equation is an equation of the form $Iu=0$ in $\Omega$, for some elliptic operator $I$.

Note. If $\mathcal L$ consists of purely second order operators of the form $\mathrm{tr} \, A \cdot D^2 u$ with $\lambda I \leq A \leq \Lambda I$, then $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ denote the usual extremal Pucci operators. It is a folklore statement that then nonlinear operator $I$ elliptic respect to $\mathcal L$ in the sense described above must coincide with a fully nonlinear elliptic operator of the form $Iu = F(D^2u,x)$. However, this proof may have never been written anywhere.
Note. It is conceivable that any uniformly elliptic integro-differential equation coincides with some Isaacs equation for some family of linear operators $L_{ab}$, at least in the translation invariant case. This was proved in the case that the operator $I$ is Frechet differentiable [3].

Another definition

Another definition which gives a more concrete structure to the equation has been suggested [4]. It is not clear if both definitions are equivalent, but both include the most important examples and are amenable of approximately the same methods.

Given a family of linear integro-differential operators $L_\alpha$ indexed by a parameter $\alpha$ which ranges in an arbitrary set $A$, a fully nonlinear elliptic equation is an equation of the form \[ F(D^2 u, Du, u, x, \{L_\alpha\}_\alpha) = 0 \qquad \text{in } \Omega.\] Where the function $F(X,p,z,x,\{i_\alpha\}_\alpha)$ is monotone increasing with respect to $X$ and $\{i_\alpha\}$ and monotone decreasing with respect to $z$.

Note that the family of linear operators $\{L_\alpha\}$ can range in an arbitrarily large set $A$ (it could even be uncountable).

Note. In several articles [4][5][6], fully nonlinear integro-differential equations of the form $F(D^2 u, Du, u, x, Lu)=f(x)$ are analyzed, where $L$ is one fixed linear integro-differential operator. This is a rigid structure for purely integro-differential equations because such equation (which would not depend on $D^2u$, $Du$ or $u$) would be forced to be linear: $Lu(x) = [F(x,\cdot)^{-1}f(x)]$. On the other hand, the results in these papers apply to the more general definitions of fully nonlinear integro-differential equations as well. The reason for the restriction to one single integro-differential operator instead of a family $\{L_\alpha\}_\alpha$ seems to be taken only for simplicity.
Note. In view of the nonlinear version of Courrege theorem given by Guillen and Schwab Cite error: Closing </ref> missing for <ref> tag [1] [6] [5] [4] [3]

Cite error: <ref> tags exist, but no <references/> tag was found
Personal tools