Template:If pagename and Boltzmann equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>RayAYang
m (1 revision: Wikipedia citation templates)
 
imported>Nestor
(Created page with "{{stub}} The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that ...")
 
Line 1: Line 1:
{{#if:x  <!--Remove surrounding whitespace-->
{{stub}}
| <!--Check for match with full pagename-->
  {{{ {{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}  <!--Has data, or is empty but defined-->
  | <!--Check for match with "User:Somepage/+"-->
    {{{ {{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|1|1}}/+
    | <!--Else, are we on a subpage or a basepage?-->
      {{#if:{{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|0|2}}
      | <!--We are on a subpage, check for match with "User:Somepage/*"-->
        {{{ {{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|1|1}}/*
        | <!--Check for match with "Somepage/*"-->
          {{{ {{#titleparts:{{#if:{{{page|}}}| {{PAGENAME:{{{page|}}}}} | {{PAGENAME}} }}|1|1}}/*
          | <!--Check for match with "/something"-->
            {{{ /{{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|0|-1}}
            | <!--Check for match with "/somethin*"-->
              {{{ /{{lc: {{padleft:|8| {{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|0|-1}}# }} }}*
              | <!--Check for match with "/someth*"-->
                {{{ /{{lc: {{padleft:|6| {{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|0|-1}}# }} }}*
                | <!--Check for match with "/some*"-->
                  {{{ /{{lc: {{padleft:|4| {{#titleparts:{{#if:{{{page|}}}| {{{page|}}} | {{FULLPAGENAME}} }}|0|-1}}# }} }}*  <!--Pad with # so "/a" doesn't match "/aaaa*"-->
                  | {{{subpage| {{{other|}}} }}}  <!--Respecting empty parameter on purpose-->
                  }}}
                }}}
              }}}
            }}}
          }}}
        }}}
      | <!--We are on a basepage, check for match with "Somepage"-->
        {{{ {{#if:{{{page|}}}| {{PAGENAME:{{{page|}}}}} | {{PAGENAME}} }}
        | {{{basepage| {{{other|}}} }}}  <!--Respecting empty parameter on purpose-->
        }}}
      }}  <!--End if, are we on a subpage or a basepage?-->
    }}}
  }}}
}}<noinclude>


{{documentation}}
The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by
<!-- Add categories and interwikis to the /doc subpage, not here! -->
 
</noinclude>
\begin{equation*}
\int_A f(x,v,t)dxdy
\end{equation*}
 
then $f(x,v,t)$ solves the non-local equation
 
\begin{equation*}
\partial_t f + v \cdot \nabla_x f = Q(f,f)
\end{equation*}
 
where $Q(f,f)$ is the Boltzmann collision operator, given by
 
\begin{equation*}
Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*
\end{equation*}
 
where $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write
 
\begin{align*}
v'  & = v-(v-v_*,e)e\\
v'_* & = v_*+(v-v_*,e)e
\end{align*}
 
where $B$, known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Revision as of 10:42, 20 November 2012

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by

\begin{equation*} \int_A f(x,v,t)dxdy \end{equation*}

then $f(x,v,t)$ solves the non-local equation

\begin{equation*} \partial_t f + v \cdot \nabla_x f = Q(f,f) \end{equation*}

where $Q(f,f)$ is the Boltzmann collision operator, given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_* \end{equation*}

where $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

where $B$, known as the Boltzmann collision kernel, measures the strength of collisions in different directions.