Sandbox and Boltzmann equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Nestor
(Created page with "{{stub}} The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that ...")
 
Line 1: Line 1:
=Sample 1=
{{stub}}


==References==
The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by
<!-- A sample reference section -->


*{{Citation | last1=Gilbarg | first1=David | last2=Trudinger | first2=Neil S. | author2-link=Neil Trudinger | title=Elliptic partial differential equations of second order | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=2nd | isbn=978-3-540-41160-4 | year=2001}}
\begin{equation*}
\int_A f(x,v,t)dxdy
\end{equation*}


=Sample 2: Inline references=
then $f(x,v,t)$ solves the non-local equation
<!-- If we wanted to be more fancy - this will not render properly until Maorung installs the Cite extension -->


This is a citation.<ref name="GT"/>
\begin{equation*}
\partial_t f + v \cdot \nabla_x f = Q(f,f)
\end{equation*}


==References==
where $Q(f,f)$ is the Boltzmann collision operator, given by
{{reflist|refs=
 
<ref name="GT">{{Citation | last1=Gilbarg | first1=David | last2=Trudinger | first2=Neil S. | author2-link=Neil Trudinger | title=Elliptic partial differential equations of second order | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=2nd | isbn=978-3-540-41160-4 | year=2001}}</ref>
\begin{equation*}
}}
Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*
\end{equation*}
 
where $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write
 
\begin{align*}
v'  & = v-(v-v_*,e)e\\
v'_* & = v_*+(v-v_*,e)e
\end{align*}
 
where $B$, known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Revision as of 10:42, 20 November 2012

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by

\begin{equation*} \int_A f(x,v,t)dxdy \end{equation*}

then $f(x,v,t)$ solves the non-local equation

\begin{equation*} \partial_t f + v \cdot \nabla_x f = Q(f,f) \end{equation*}

where $Q(f,f)$ is the Boltzmann collision operator, given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_* \end{equation*}

where $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

where $B$, known as the Boltzmann collision kernel, measures the strength of collisions in different directions.