Fractional Advection Dispersion Equation

From nonlocal pde
Revision as of 17:49, 18 November 2012 by imported>Nestor
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This article is a stub. You can help this nonlocal wiki by expanding it.

The Fractional Advection Dispersion (fADE) was introduced [1] (and further developed and justified [2] [3] [4]) to better account for super-diffusive spreading of tracer particles in aquifers. It has quite a few variations at this point, but a couple of characteristic examples are

\[ u_t = c\frac{\partial u}{\partial x} + p\frac{\partial^\alpha u}{\partial x^\alpha} + q\frac{\partial^\alpha u}{\partial (-x)^\alpha} , \] where the fractional derivatives are defined as \begin{equation} \frac{\partial^{\alpha}}{\partial e^{\alpha}} u(x) = c_{n,\alpha}\int_0^\infty \frac{u(x)-u(x-ye)}{y}y^{-\alpha}dy\ \ \text{and}\ \ \frac{\partial^{\alpha}}{\partial (-e)^{\alpha}} u(x) = c_{n,\alpha}\int_0^\infty \frac{u(x)-u(x+ye)}{y}y^{-\alpha}dy . \end{equation} It is important to point out that these fractional derivatives are examples of one-dimensional linear integro-differential operators with non-symmetric kernels (in this case, e.g. $K(y)=\mathbb{1}_{\{y\geq 0\}}|y|^{-1-\alpha}$).

References

  1. Meerschaert, M.M.; Benson, D. J.; Bäumer, B. (1999), "Multidimensional advection and fractional dispersion", Physical Review E (APS) 59 (5): 5026, ISSN 1539-3755 
  2. Benson, D. J.; Wheatcraft, S.W.; Meerschaert, M.M. (2000), "Application of a fractional advection-dispersion equation", Water Resources Research 36 (6): 1403–1412 
  3. Meerschaert, M.M.; Benson, D. J.; Baeumer, B. (2001), "Operator Lévy motion and multiscaling anomalous diffusion", Physical Review E (APS) 63 (2): 021112, ISSN 1539-3755 
  4. Benson, D. J.; Schumer, R.; Meerschaert, M.M.; Wheatcraft, S.W. (2001), "Fractional dispersion, Lévy motion, and the MADE tracer tests", Transport in Porous Media (Berlin, New York: Springer-Verlag) 42 (1): 211–240