Dirichlet form

From nonlocal pde
Revision as of 21:36, 5 February 2012 by imported>Luis
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

$$ \newcommand{\dd}{\mathrm{d}} \newcommand{\R}{\mathbb{R}} $$

A Dirichlet form refers to a quadratic functional defined by an integral of the form \[ \iint_{\R^n \times \R^n} (u(y)-u(x))^2 k(x,y)\, \dd x \dd y, \] for some nonnegative kernel $K$.

If the kernel $K$ satisfies the bound $K(x,y) \leq \Lambda |x-y|^{-n-s}$, then the quadratic form is bounded in $\dot H^{s/2}$. If moreover, $\lambda |x-y|^{-n-s} \leq K(x,y)$, then the form is comparable to the norm in $\dot H^{s/2}$ squared.

Dirichlet forms are natural generalizations to fractional order of the Dirichlet integrals \[ \int a_{ij}(x) \partial_i u \partial_j u \dd x, \] where $a_{ij}$ is elliptic.

The Euler-Lagrange equation of a Dirichlet form is a fractional order version of elliptic equations in divergence form. They are studied using variational methods and they are expected to satisfy similar properties [1][2][3].

References

(There should be a lot more references here)

  1. Barlow, Martin T.; Bass, Richard F.; Chen, Zhen-Qing; Kassmann, Moritz (2009), "Non-local Dirichlet forms and symmetric jump processes", Transactions of the American Mathematical Society 361 (4): 1963–1999, doi:10.1090/S0002-9947-08-04544-3, ISSN 0002-9947, http://dx.doi.org/10.1090/S0002-9947-08-04544-3 
  2. Kassmann, Moritz (2009), "A priori estimates for integro-differential operators with measurable kernels", Calculus of Variations and Partial Differential Equations 34 (1): 1–21, doi:10.1007/s00526-008-0173-6, ISSN 0944-2669, http://dx.doi.org/10.1007/s00526-008-0173-6 
  3. Caffarelli, Luis; Chan, Chi Hin; Vasseur, Alexis (2011), Journal of the American Mathematical Society (24): 849–869, doi:10.1090/S0894-0347-2011-00698-X, ISSN 0894-0347 


This article is a stub. You can help this nonlocal wiki by expanding it.