Template:Documentation and Hele-Shaw: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Plastikspork
(add)
 
imported>Hector
No edit summary
 
Line 1: Line 1:
<!--
{{stub}}
  Automatically add {{template sandbox notice}} when on a /sandbox page.
-->{{#ifeq: {{SUBPAGENAME}} | sandbox
| <div style="clear: both;"></div>{{template sandbox notice}}
}}<!--
  Automatically add {{pp-template}} to protected templates.
-->{{template other
| {{#ifeq: {{PROTECTIONLEVEL:move}} | sysop
  | {{pp-template|docusage=yes}}
  | {{#if: {{PROTECTIONLEVEL:edit}}
    | {{pp-template|docusage=yes}}
    | <!--Not protected, or only semi-move-protected-->
    }}
  }}
}}<!--
  Start of green doc box.
-->{{documentation/start box2
| preload = {{{preload|}}}  <!--Allow custom preloads-->
| heading = {{{heading|¬}}}  <!--Empty but defined means no header-->
| heading-style = {{{heading-style|}}}
| content = {{{content|}}}


<!--Some namespaces must have the /doc, /sandbox and /testcases
The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates<ref name="MR0097227"/>. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain,
    in talk space-->
\begin{align*}
| docspace = {{documentation/docspace}}
\Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\
\frac{\partial_t u}{|Du|} &= |Du| \text{ on } \Gamma = \partial \{u>0\}\cap \Omega
\end{align*}
The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side).
Particular solutions are given for instance by the planar profiles
\[
P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad  A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0
\]


| 1 = {{{1|}}}  <!--Other docname, if fed-->
The model has a non-local nature as any deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.


<!--The namespace is added in /start box2-->
Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives
| template page = {{documentation/template page}}
\[
\frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2
\]
By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies
\begin{align*}
\Delta w &= 0 \text{ in } \{x_n>0\}\\
\partial_t w &= a\partial_n w \text{ on } \{x_n=0\}
\end{align*}
Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$,
\[
\partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w
\]


}}<!-- Start content --><!--
== References ==
  Start load the /doc content:
{{reflist|refs=
  Note: The line breaks between this comment and the next line are necessary
  so  "=== Headings ===" at the start and end of docs are interpreted.
-->
{{#switch: {{#if:{{{content|}}}|1|0}}{{#if:{{{1|}}}|1|0}}{{#ifexist:{{{1|}}}|1|0}}{{#ifexist:{{documentation/docspace}}:{{documentation/template page}}/doc|1|0}}
| 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110
| 1111 = {{{content|}}}
| 0110 | 0111 = {{ {{{1}}} }}
| 0001 | 0011 = {{ {{documentation/docspace}}:{{documentation/template page}}/doc }}
| 0000 | 0100 | 0010 | 0101 =
}}
<!--
  End load the /doc content:
  Note: The line breaks between this comment and the previous line are necessary
  so  "=== Headings ===" at the start and end of docs are interpreted.
-->{{documentation/end box2
| preload = {{{preload|}}}  <!--Allow custom preloads-->
| content = {{{content|}}}
| link box = {{{link box|}}}  <!--So "link box=off" works-->


<!--Some namespaces must have the /doc, /sandbox and /testcases
<ref name="MR0097227">{{Citation | last1=Saffman | first1= P. G. | last2=Taylor | first2= Geoffrey | title=The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid | journal=Proc. Roy. Soc. London. Ser. A | issn=0962-8444 | year=1958 | volume=245 | pages=312--329. (2 plates)}}</ref>
    in talk space-->
| docspace = {{documentation/docspace}}


| 1 = {{{1|}}}  <!--Other docname, if fed-->
}}
 
<!--The namespace is added in /end box2-->
| template page = {{documentation/template page}}
 
}}<!--
  End of green doc box
--><noinclude>
 
<!-- Add categories and interwikis to the /doc subpage, not here! -->
</noinclude>

Revision as of 12:23, 29 July 2016

This article is a stub. You can help this nonlocal wiki by expanding it.

The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates[1]. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain, \begin{align*} \Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\ \frac{\partial_t u}{|Du|} &= |Du| \text{ on } \Gamma = \partial \{u>0\}\cap \Omega \end{align*} The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side). Particular solutions are given for instance by the planar profiles \[ P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0 \]

The model has a non-local nature as any deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.

Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives \[ \frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2 \] By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies \begin{align*} \Delta w &= 0 \text{ in } \{x_n>0\}\\ \partial_t w &= a\partial_n w \text{ on } \{x_n=0\} \end{align*} Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$, \[ \partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w \]

References

  1. Saffman, P. G.; Taylor, Geoffrey (1958), "The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid", Proc. Roy. Soc. London. Ser. A 245: 312--329. (2 plates), ISSN 0962-8444