Template:Documentation/end box and Hele-Shaw: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>TheDJ
(replace script with the new actual pagediff)
 
imported>Hector
No edit summary
 
Line 1: Line 1:
<noinclude><div></noinclude><div style="clear: both;"></div><!--So right or left floating items don't stick out of the doc box.-->
{{stub}}
</div><!--End of green doc box--><!--
  Link box below for the doc meta-data:
-->{{#if:
  <!--Check if we should show the link box-->
  {{#ifeq: {{{link box|}}} | off
  |
  | {{{doc exist|yes}}}{{
    #switch: {{SUBJECTSPACE}}
    | {{ns:User}}
    | {{ns:Template}} = yes
    }}
  }}


| {{fmbox
The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates<ref name="MR0097227"/>. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain,
  | id = documentation-meta-data
\begin{align*}
  | image = none
\Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\
  | style = background-color: #ecfcf4;
\frac{\partial_t u}{|Du|} &= |Du| \text{ on } \Gamma = \partial \{u>0\}\cap \Omega
  | textstyle = font-style: italic;
\end{align*}
  | text =
The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side).  
    {{#if: {{{link box|}}}
Particular solutions are given for instance by the planar profiles
    | {{{link box}}}  <!--Use custom link box content-->
\[
    | {{#if: {{{doc exist|yes}}}
P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad  A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0
      | <!--/doc exists, link to it-->
\]
        The above [[Wikipedia:Template documentation|documentation]] is [[Wikipedia:Transclusion|transcluded]] from [[{{{docpage|{{FULLPAGENAME}}/doc}}}]]. <small style="font-style: normal">([{{fullurl:{{{docpage|{{FULLPAGENAME}}/doc}}}|action=edit}} edit] &#124; [{{fullurl:{{{docpage|{{FULLPAGENAME}}/doc}}}|action=history}} history])</small> <br>
      }}<!--
        Add links to /sandbox and /testcases when appropriate:
  -->{{#switch: {{SUBJECTSPACE}}
      | {{ns:User}}
      | {{ns:Template}} =  
        Editors can experiment in this template's {{
        #ifexist: {{{sandbox| {{FULLPAGENAME}}/sandbox }}}
        | [[{{{sandbox| {{FULLPAGENAME}}/sandbox }}}|sandbox]] <small style="font-style: normal">([{{fullurl: {{{sandbox| {{FULLPAGENAME}}/sandbox }}} | action=edit }} edit] {{!}} [{{fullurl:Special:ComparePages | page1={{urlencode:{{{template page|{{FULLPAGENAME}}}}}}}&page2={{urlencode:{{{sandbox|{{FULLPAGENAME}}/sandbox}}}}}}} diff])</small>
        | sandbox <small style="font-style: normal">([{{fullurl: {{{sandbox| {{FULLPAGENAME}}/sandbox }}} | action=edit&preload=Template:Documentation/preload-sandbox }} create])</small>  
        }} and {{
        #ifexist: {{{testcases| {{FULLPAGENAME}}/testcases }}}
        | [[{{{testcases| {{FULLPAGENAME}}/testcases }}}|testcases]] <small style="font-style: normal">([{{fullurl: {{{testcases| {{FULLPAGENAME}}/testcases }}} | action=edit }} edit])</small>
        | testcases <small style="font-style: normal">([{{fullurl: {{{testcases| {{FULLPAGENAME}}/testcases }}} | action=edit&preload=Template:Documentation/preload-testcases }} create])</small>
        }} pages. <br>
      }}<!--
        Show the cats and interwiki text, but not
        if "content" fed or "docname fed" since then it is
        unclear where to add the cats and interwikis.
  -->{{#if: {{{content|}}} {{{docname fed|}}}
      |
      | Please add categories and interwikis to the [[{{{docpage|{{FULLPAGENAME}}/doc}}}|/doc]] subpage.
      }}<!--
        Show the "Subpages" link:
  -->{{#switch: {{SUBJECTSPACE}}
      | {{ns:File}} =   <!--Don't show it-->
      | {{ns:Template}} = &#32;[[Special:PrefixIndex/{{{template page|{{FULLPAGENAME}}}}}/|Subpages of this template]].
      | #default = &#32;[[Special:PrefixIndex/{{{template page|{{FULLPAGENAME}}}}}/|Subpages of this page]].
      }}
    }}{{#ifexist:{{FULLPAGENAME}}/Print
    |</br>A [[Help:Books/for experts#Improving the book layout|print version]] of this template exists at [[/Print]]. If you make a change to this template, please update the print version as well.[[Category:Templates with print versions]]
    }}
  }}
}}<!--End link box--><!--


  Detect and report strange usage:
The model has a non-local nature as any deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.
-->{{#if:


  <!--Check if {{documentation}} is transcluded
Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives
      on a /doc or /testcases page-->
\[
  {{#switch: {{SUBPAGENAME}}
\frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2
  | doc
\]
  | testcases = strange
By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies
  }}
\begin{align*}
  <!--More checks can be added here, just return anything
\Delta w &= 0 \text{ in } \{x_n>0\}\\
      to make the surrounding if-case trigger-->
\partial_t w &= a\partial_n w \text{ on } \{x_n=0\}
\end{align*}
Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$,
\[
\partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w
\]


| <includeonly>[[Category:Wikipedia pages with strange ((documentation)) usage|{{main other|Main:}}{{FULLPAGENAME}}]]<!-- Sort on namespace --></includeonly>
== References ==
{{reflist|refs=


}}<noinclude>
<ref name="MR0097227">{{Citation | last1=Saffman | first1= P. G. | last2=Taylor | first2= Geoffrey | title=The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid | journal=Proc. Roy. Soc. London. Ser. A | issn=0962-8444 | year=1958 | volume=245 | pages=312--329. (2 plates)}}</ref>
{{pp-template|small=yes}}
 
</noinclude>
}}

Revision as of 12:23, 29 July 2016

This article is a stub. You can help this nonlocal wiki by expanding it.

The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates[1]. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain, \begin{align*} \Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\ \frac{\partial_t u}{|Du|} &= |Du| \text{ on } \Gamma = \partial \{u>0\}\cap \Omega \end{align*} The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side). Particular solutions are given for instance by the planar profiles \[ P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0 \]

The model has a non-local nature as any deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.

Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives \[ \frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2 \] By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies \begin{align*} \Delta w &= 0 \text{ in } \{x_n>0\}\\ \partial_t w &= a\partial_n w \text{ on } \{x_n=0\} \end{align*} Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$, \[ \partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w \]

References

  1. Saffman, P. G.; Taylor, Geoffrey (1958), "The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid", Proc. Roy. Soc. London. Ser. A 245: 312--329. (2 plates), ISSN 0962-8444