Category:Quasilinear equations and Boltzmann equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Nestor
No edit summary
 
Line 1: Line 1:
A quasilinear equation is one that is linear in all but the terms involving the highest order derivatives (whether they are of fractional order or not). For instance, the following equations are all quasilinear (and not semilinear)
{{stub}}


\[u_t-\mbox{div} \left ( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right ) = 0 \]
The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by


<center> [[Mean curvature flow]] </center>
\begin{equation*}
\int_A f(x,v,t)dxdy
\end{equation*}


\[ u_t = \mbox{div} \left ( u \nabla \mathcal{K} u ,\;\; \mathcal{K} u = u * |x|^{n+\alpha}\right ) \]
then $f(x,v,t)$ solves the non-local equation


<center> [[Nonlocal porous medium equation]] </center>
\begin{equation*}
\partial_t f + v \cdot \nabla_x f = Q(f,f)
\end{equation*}


where $Q(f,f)$ is the Boltzmann collision operator, given by


Equations which are not quasilinear are called [[Fully nonlinear equations]]. Note that all [[Semilinear equations]] are automatically quasilinear.
\begin{equation*}
Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*
\end{equation*}
 
here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write
 
\begin{align*}
v'  & = v-(v-v_*,e)e\\
v'_* & = v_*+(v-v_*,e)e
\end{align*}
 
and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Revision as of 11:05, 20 November 2012

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by

\begin{equation*} \int_A f(x,v,t)dxdy \end{equation*}

then $f(x,v,t)$ solves the non-local equation

\begin{equation*} \partial_t f + v \cdot \nabla_x f = Q(f,f) \end{equation*}

where $Q(f,f)$ is the Boltzmann collision operator, given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_* \end{equation*}

here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.

Pages in category "Quasilinear equations"

The following 2 pages are in this category, out of 2 total.