Isaacs equation

From nonlocal pde
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Isaacs equation is the equality \[ \sup_{a \in \mathcal{A}} \ \inf_{b \in \mathcal{B}} \ L_{ab} u(x) = f(x), \] where $L_{ab}$ is some family of linear integro-differential operators with two indices $a \in \mathcal A$ and $b \in \mathcal B$.

The equation appears naturally in zero sum stochastic games with Levy processes.

The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_{ab}$. Under some conditions on that class, there are interior $C^{1,\alpha}$ estimates for the solution.

Note that any second order fully nonlinear uniformly elliptic PDE $F(D^2 u)=0$ can be written as an Isaacs equation by the following two steps:

  1. $F(X)$ is Lipschitz with constant $\Lambda$, so it is the infimum of all cones $C_{X_0}(x) = F(X_0) + \Lambda|X-X_0|$.
  2. Each cone $C(X)$ is the supremum of all linear functions of the form $L(X) = F(X_0) + \mathrm{tr} \, A \cdot (X-X_0)$ for $||A||\leq \Lambda$.

A more general second order fully nonlinear uniformly elliptic PDE $F(D^2 u, Du, u, x)=0$ can also be written as an Isaacs equation if it is Lipschitz with respect to all parameters.

Under very general assumptions, fully nonlinear integro-differential equations can be written in the form of an Isaacs equation.


This article is a stub. You can help this nonlocal wiki by expanding it.