Extremal operators and Aleksandrov-Bakelman-Pucci estimates: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Nestor
 
Line 1: Line 1:
Given any family of [[linear integro-differential operators]] $\mathcal{L}$, we define the [[extremal operators]] $M^+_\mathcal{L}$ and $M^-_\mathcal{L}$:
The celebrated "Alexandroff-Bakelman-Pucci Maximum Principle" (often abbreviated as "ABP Estimate") is a pointwise estimate for weak solutions of elliptic equations. It is the backbone of the regularity theory of fully nonlinear second order elliptic equations <ref name="CC"/> and more recently for [[Fully nonlinear integro-differential equations]] <ref name="CS"/>.
\begin{align*}
M^+_\mathcal{L} u(x) &= \sup_{L \in \mathcal{L}} \, L u(x) \\
M^-_\mathcal{L} u(x) &= \inf_{L \in \mathcal{L}} \, L u(x)
\end{align*}


If $\mathcal L$ consists of purely second order operators of the form $Lu = \mathrm{tr} \, A \cdot D^2 u$ with $\lambda I \leq A \leq \Lambda I$, then $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ denote the usual extremal Pucci operators, which have the formula
== The classical Alexsandroff-Bakelman-Pucci Theorem ==  
\begin{align*}
P^+(D^2 u) &= \Lambda \mathrm{tr}(D^2u^+) - \lambda \mathrm{tr}(D^2u^-)\\
P^-(D^2 u) &= \lambda \mathrm{tr}(D^2u^+) - \Lambda \mathrm{tr}(D^2u^-)
\end{align*}


If $\mathcal{L}$ consists of all [[linear integro-differential operator|symmetric purely integro-differential operators, uniformly elliptic of order $s$]], then the extremal operators have the formula<ref name="S"/>
Let $u$ be a viscosity supersolution of the linear equation:
\begin{align*}
 
M^+\, u &= \int_{\R^n} \left( \Lambda \delta u(x,y)^+ - \lambda \delta u(x,y)^- \right) \frac{(2-s)}{|y|^{n+s}} \mathrm d y \\
\[ Lu \leq f(x) \;\; x \in B_1\]
M^-\, u &= \int_{\R^n} \left( \lambda \delta u(x,y)^+ - \Lambda \delta u(x,y)^- \right) \frac{(2-s)}{|y|^{n+s}} \mathrm d y
\[ u \geq 0 \;\; x \in \partial B_1\]
\end{align*}
\[ Lu:=a_{ij}(x) u_{ij}(x)\]
where $\delta u(x,y) = (u(x+y) + u(x-y) - 2u(x))$. These two extremal operator are sometimes called "the ''monster'' Pucci operators".
 
The coefficients $a_{ij}(x)$ are only assumed to be measurable functions such that for positive constants $\lambda<\Lambda$ we have
 
\[ \lambda |\xi|^2 \leq a_{ij}(x) \xi_i\xi_j \leq \Lambda |\xi|^2 \;\;\forall \; \xi \in \mathbb{R}^n \]
 
Moreover, the function $f$ is assumed to be continuous. Then, the ABP Theorem says that
 
\[ \sup \limits_{B_1}\; |u_-|^n \leq C_{n,\lambda,\Lambda} \int_{\{ u=\Gamma_u \} } f_+^n dx \]
 
Where $\Gamma_u$ is the "convex envelope" of $u$: it is the largest non-positive convex function in $B_2$ that lies above $u$ in $B_1$. The fact that the integration on the right hand side takes place only on the set where $u$ agrees with its convex envelope is an important feature of the estimate and it is not to be overlooked <ref name="CC"/>.
 
== ABP-type estimates for integro-differential equations ==
 
The setting for integro-differential equations is similar, what changes are the operators: let $u$ be a viscosity supersolution of the equation
 
\[ Lu \leq f(x) \;\; x \in B_1\]
\[ u \leq 0 \;\; x \in  B_1^c\]
\[ Lu:= (2-\sigma)\int_{\R^n} \delta u(x,y)\frac{a(x,y)}{|y|^{n+\sigma}} dy\]
 
Here $\delta u(x,y):= u(x+y)+u(x-y)-2u(x)$ and $\sigma \in (0,2)$. The function $a(x,y)$ is only assumed to be measurable and such that for some $\Lambda\geq\lambda>0$ we have
 
\[ \lambda \leq  a(x,y) \leq  \Lambda \;\;\forall\;x,y\in \R^n\]
 
As in the second order ABP, the function $f$ is assumed to be continuous. Then, Caffarelli and Silvestre proved <ref name="CS"/> there is an estimate
 
\[ \sup \limits_{B_1} \; u^n \leq  C_{n,\lambda,\Lambda,\sigma}\sum \limits_{i=1}^m  ( \sup \limits_{Q_i^*} |f|^n) |Q^*_i|  \]
 
For some finite collection of non-overlapping cubes $\{Q_i \}_{i=1}^m$ that cover the set $\{ u=\Gamma_u\}$, each cube having non-zero intersection with this set.  Moreover, all the cubes have diameters $d_i \lesssim 2^{-\frac{1}{2-\sigma}}$. As before, $\Gamma_u$ denotes the "concave envelope" of $u$ in $B_2$.
 
Furthermore,  although the sharp constant may depend on $\sigma$, it is uniformly bounded for all $\sigma$ bounded away from zero. In particular, as $\sigma \to 2^-$ the above constant does not blow up, and since the diameter of the cubes goes to zero as $\sigma$ approaches $2$, one can check that this last estimate implies the second order ABP in the limit.
 
== References ==


== References ==
{{reflist|refs=
{{reflist|refs=
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Hölder estimates for solutions of integro-differential equations like the fractional Laplace | url=http://dx.doi.org/10.1512/iumj.2006.55.2706 | doi=10.1512/iumj.2006.55.2706 | year=2006 | journal=Indiana University Mathematics Journal | issn=0022-2518 | volume=55 | issue=3 | pages=1155–1174}}</ref>
<ref name="CC">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Cabré | first2=Xavier | title=Fully nonlinear elliptic equations | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=American Mathematical Society Colloquium Publications | isbn=978-0-8218-0437-7 | year=1995 | volume=43}}</ref>
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity theory for fully nonlinear integro-differential equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 | year=2009 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
}}
}}

Revision as of 12:40, 6 June 2011

The celebrated "Alexandroff-Bakelman-Pucci Maximum Principle" (often abbreviated as "ABP Estimate") is a pointwise estimate for weak solutions of elliptic equations. It is the backbone of the regularity theory of fully nonlinear second order elliptic equations [1] and more recently for Fully nonlinear integro-differential equations [2].

The classical Alexsandroff-Bakelman-Pucci Theorem

Let $u$ be a viscosity supersolution of the linear equation:

\[ Lu \leq f(x) \;\; x \in B_1\] \[ u \geq 0 \;\; x \in \partial B_1\] \[ Lu:=a_{ij}(x) u_{ij}(x)\]

The coefficients $a_{ij}(x)$ are only assumed to be measurable functions such that for positive constants $\lambda<\Lambda$ we have

\[ \lambda |\xi|^2 \leq a_{ij}(x) \xi_i\xi_j \leq \Lambda |\xi|^2 \;\;\forall \; \xi \in \mathbb{R}^n \]

Moreover, the function $f$ is assumed to be continuous. Then, the ABP Theorem says that

\[ \sup \limits_{B_1}\; |u_-|^n \leq C_{n,\lambda,\Lambda} \int_{\{ u=\Gamma_u \} } f_+^n dx \]

Where $\Gamma_u$ is the "convex envelope" of $u$: it is the largest non-positive convex function in $B_2$ that lies above $u$ in $B_1$. The fact that the integration on the right hand side takes place only on the set where $u$ agrees with its convex envelope is an important feature of the estimate and it is not to be overlooked [1].

ABP-type estimates for integro-differential equations

The setting for integro-differential equations is similar, what changes are the operators: let $u$ be a viscosity supersolution of the equation

\[ Lu \leq f(x) \;\; x \in B_1\] \[ u \leq 0 \;\; x \in B_1^c\] \[ Lu:= (2-\sigma)\int_{\R^n} \delta u(x,y)\frac{a(x,y)}{|y|^{n+\sigma}} dy\]

Here $\delta u(x,y):= u(x+y)+u(x-y)-2u(x)$ and $\sigma \in (0,2)$. The function $a(x,y)$ is only assumed to be measurable and such that for some $\Lambda\geq\lambda>0$ we have

\[ \lambda \leq a(x,y) \leq \Lambda \;\;\forall\;x,y\in \R^n\]

As in the second order ABP, the function $f$ is assumed to be continuous. Then, Caffarelli and Silvestre proved [2] there is an estimate

\[ \sup \limits_{B_1} \; u^n \leq C_{n,\lambda,\Lambda,\sigma}\sum \limits_{i=1}^m ( \sup \limits_{Q_i^*} |f|^n) |Q^*_i| \]

For some finite collection of non-overlapping cubes $\{Q_i \}_{i=1}^m$ that cover the set $\{ u=\Gamma_u\}$, each cube having non-zero intersection with this set. Moreover, all the cubes have diameters $d_i \lesssim 2^{-\frac{1}{2-\sigma}}$. As before, $\Gamma_u$ denotes the "concave envelope" of $u$ in $B_2$.

Furthermore, although the sharp constant may depend on $\sigma$, it is uniformly bounded for all $\sigma$ bounded away from zero. In particular, as $\sigma \to 2^-$ the above constant does not blow up, and since the diameter of the cubes goes to zero as $\sigma$ approaches $2$, one can check that this last estimate implies the second order ABP in the limit.

References

  1. 1.0 1.1 Caffarelli, Luis A.; Cabré, Xavier (1995), Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, 43, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0437-7 
  2. 2.0 2.1 Caffarelli, Luis; Silvestre, Luis (2009), "Regularity theory for fully nonlinear integro-differential equations", Communications on Pure and Applied Mathematics 62 (5): 597–638, doi:10.1002/cpa.20274, ISSN 0010-3640, http://dx.doi.org/10.1002/cpa.20274