Isaacs equation and Interacting Particle Systems: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Nestor
No edit summary
 
Line 1: Line 1:
The Isaacs equation is the equality
The (second order) integro-differential equation
\[ \sup_{a \in \mathcal{A}} \ \inf_{b \in \mathcal{B}} \ L_{ab} u(x) = f(x), \]
\[ \begin{array}{rl}
where $L_{ab}$ is some family of linear integro-differential operators with two indices $a \in \mathcal A$ and $b \in \mathcal B$.
\partial_t \rho &= \text{div} \left( D(\rho) \nabla \rho+\sigma(\rho) \nabla V[\rho]\right )\\
V[\rho] & = J * \rho
\end{array}\]
describes at the macroscopic scale the phase segregation in  a gas whose particles are interacting at long ranges, as shown by Giacomin and Lebowitz <ref name="GL97"/>. This equation not only arises as the limit of the microscopic system but the approximation is good enough to capture both qualitative and quantitative phenomena of the microscopic system <ref name="GL97"/>. More concretely, the above equation arises as the hydrodynamic limit of an interacting particle system evolving by the so called Kawasaki dynamics. Giacomin and Lebowitz also note that unlike the standard Cahn-Hilliard equation, the above integro-differential equation has been shown rigorously to arise as the macroscopic limit of a microscopic model of interacting particles <ref name="GL97"/>.


The equation appears naturally in zero sum stochastic games with [[Levy processes]].


The equation is [[uniformly elliptic]] with respect to any class $\mathcal{L}$ that contains all the operators $L_{ab}$.
== The interacting particle system ==


Note that any second order fully nonlinear uniformly elliptic PDE $F(D^2 u)=0$ can be written as an Isaacs equation by the following two steps:
At the microscopic level, the system is described by a function
# $F(X)$ is Lipschitz with constant $\Lambda$, so it is the infimum of all cones $C_{X_0}(x) = F(X_0) + \Lambda|X-X_0|$.
# Each cone $C(X)$ is the supremum of all linear functions of the form $L(X) = F(X_0) + \mathrm{tr} \, A \cdot (X-X_0)$ for $||A||\leq \Lambda$.


A more general second order fully nonlinear uniformly elliptic PDE $F(D^2 u, Du, u, x)=0$ can also be written as an Isaacs equation if it is linear with respect to all parameters.
\[ \eta  : \Lambda_\gamma \to \{ 0,1\} \]


[[Category:Fully nonlinear equations]]
where  $\gamma>0$ taken very small represents the spatial scale and  $\Lambda_\gamma $ denotes the finite $d$-dimensional lattice
 
\[ \Lambda_\gamma = \{ 1,2,...,[\gamma^{-1}]\}^d\]
 
in other words, a cube inside $\mathbb{Z}^d$ with sides given by $[\gamma^{-1}]$, as $\gamma \to 0$, this exhausts all of $\mathbb{Z}^d$. The set of all posible configurations $\eta$ will be denoted by $\Omega_\gamma$, this is the state space where the (microscopic scale) dynamics takes place. As $\gamma \to 0$ we expect to recover the above as a limiting dynamical system the integro-differential equation listed above, of course first we have to describe the microscopic dynamics.
 
Given any initial condition $\eta_0 : \Lambda_\gamma \to \{0,1\}$, we consider a stochastic Poisson jump process with values in $\Lambda_\gamma$ generated by the operator
 
\[ L_\gamma f(\eta) = \sum \limits_{x,y\in \Lambda_\gamma} c_\gamma(x,y;\eta) \left (f(\eta^{x,y})-f(\eta) \right )\]
 
where $\eta^{x,y}$ denotes the state $\eta$ where the values at $x$ and $y$ have been interchanged and the kernel $c_\gamma(x,y;\eta)$ is defined as
 
\[c_\gamma(x,y;\eta) = \left \{ \begin{array}{rl}
\Phi \left ( \beta\left [ H(\eta^{x,y}-H(\eta) \right ] \right) & \text{ if }\; |x-y|=1\\
0 & \text{ otherwise }
  \end{array}\right.\]
 
 
== References ==
{{reflist|refs=
 
<ref name="GL97"> {{Citation | last1=Lebowitz | first1=Joel | last2=Giacomin | first2=Giambattista | title=Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits | doi=10.1007/BF02181479 | year=1997 | journal=Journal of Statistical Physics | issn=0022-4715 | volume=87 | issue=1 | pages=37–61}} </ref>
 
}}

Revision as of 00:35, 1 February 2012

The (second order) integro-differential equation \[ \begin{array}{rl} \partial_t \rho &= \text{div} \left( D(\rho) \nabla \rho+\sigma(\rho) \nabla V[\rho]\right )\\ V[\rho] & = J * \rho \end{array}\] describes at the macroscopic scale the phase segregation in a gas whose particles are interacting at long ranges, as shown by Giacomin and Lebowitz [1]. This equation not only arises as the limit of the microscopic system but the approximation is good enough to capture both qualitative and quantitative phenomena of the microscopic system [1]. More concretely, the above equation arises as the hydrodynamic limit of an interacting particle system evolving by the so called Kawasaki dynamics. Giacomin and Lebowitz also note that unlike the standard Cahn-Hilliard equation, the above integro-differential equation has been shown rigorously to arise as the macroscopic limit of a microscopic model of interacting particles [1].


The interacting particle system

At the microscopic level, the system is described by a function

\[ \eta : \Lambda_\gamma \to \{ 0,1\} \]

where $\gamma>0$ taken very small represents the spatial scale and $\Lambda_\gamma $ denotes the finite $d$-dimensional lattice

\[ \Lambda_\gamma = \{ 1,2,...,[\gamma^{-1}]\}^d\]

in other words, a cube inside $\mathbb{Z}^d$ with sides given by $[\gamma^{-1}]$, as $\gamma \to 0$, this exhausts all of $\mathbb{Z}^d$. The set of all posible configurations $\eta$ will be denoted by $\Omega_\gamma$, this is the state space where the (microscopic scale) dynamics takes place. As $\gamma \to 0$ we expect to recover the above as a limiting dynamical system the integro-differential equation listed above, of course first we have to describe the microscopic dynamics.

Given any initial condition $\eta_0 : \Lambda_\gamma \to \{0,1\}$, we consider a stochastic Poisson jump process with values in $\Lambda_\gamma$ generated by the operator

\[ L_\gamma f(\eta) = \sum \limits_{x,y\in \Lambda_\gamma} c_\gamma(x,y;\eta) \left (f(\eta^{x,y})-f(\eta) \right )\]

where $\eta^{x,y}$ denotes the state $\eta$ where the values at $x$ and $y$ have been interchanged and the kernel $c_\gamma(x,y;\eta)$ is defined as

\[c_\gamma(x,y;\eta) = \left \{ \begin{array}{rl} \Phi \left ( \beta\left [ H(\eta^{x,y}-H(\eta) \right ] \right) & \text{ if }\; |x-y|=1\\ 0 & \text{ otherwise } \end{array}\right.\]


References

  1. 1.0 1.1 1.2 Lebowitz, Joel; Giacomin, Giambattista (1997), "Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits", Journal of Statistical Physics 87 (1): 37–61, doi:10.1007/BF02181479, ISSN 0022-4715