Extension technique and Extremal operators: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Pablo
 
imported>Luis
No edit summary
 
Line 1: Line 1:
The Dirichlet-to-Neumann operator for the upper half-plane maps the boundary value $U(x, 0)$ of a harmonic function $U(x, y)$ in the upper half-space $\R^{n+1}_+ = \R^n \times [0, \infty)$ to its outer normal derivative $-\partial_y U(x, 0)$. This operator coincides with the square root of the Laplace operator, $(-\Delta)^{1/2}$. Extension technique is a similar identification of non-local operators (most notably the [[fractional Laplacian]] $(-\Delta)^s$) as Dirichlet-to-Neumann operators for (possibly degenerate) elliptic equations. This construction is frequently used to turn nonlocal problems involving the fractional Laplacian into local problems in one more space dimension.
The extremal operator associated to some class of linear operators $\mathcal{L}$ represent the maximal and minimal value that $Lu(x)$ can take from all possible choices of $L \in \mathcal L$.


==Fractional Laplacian==
The extremal operators are used to define [[uniformly elliptic|uniform ellipticity]] for nonlocal operators. In fact, the extremal operators are also the maximal and minimal nonlinear uniformly elliptic operators with respect to $\mathcal L$ that vanish at zero.


The extension problem for the [[fractional Laplacian]] $(-\Delta)^s$, $s \in (0, 1)$ takes the following form.<ref name="CS"/> Let
Given any family of [[linear integro-differential operators]] $\mathcal{L}$, we define the [[extremal operators]] $M^+_\mathcal{L}$ and $M^-_\mathcal{L}$:
$$U:\mathbb{R}^n \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$
\begin{align*}
be a function satisfying
M^+_\mathcal{L} u(x) &= \sup_{L \in \mathcal{L}} \, L u(x) \\
\begin{equation}
M^-_\mathcal{L} u(x) &= \inf_{L \in \mathcal{L}} \, L u(x)
\label{eqn:Main}
\end{align*}
\nabla \cdot (y^{1-2s} \nabla U(x,y)) = 0
\end{equation}
on the upper half-space, lying inside the appropriately weighted Sobolev space $\dot{H}(1-2s,\mathbb{R}^{n+1}_+)$. Then if we let $u(x) = U(x,0)$, we have
\begin{equation}
\label{eqn:Neumann}
(-\Delta)^s u(x) = -C_{n,s} \lim_{y\rightarrow 0} y^{1-2s} \partial_y U(x,y).
\end{equation}
The energy associated with the operator in \eqref{eqn:Main} is
\begin{equation}
\label{eqn:Energy}
\int y^{1-2s} |\nabla U|^2 dx dy
\end{equation}


The weight $y^{1-2s}$, for $0<s<1$, lies inside the Muckenhoupt $A_2$ class of weights. It is known that degenerate 2nd order elliptic PDEs with these weights satisfy many of the usual properties of uniformly elliptic PDEs, such as the maximum principle, the [[De Giorgi-Nash-Moser]] regularity theory, the [[boundary Harnack inequality]], and the Wiener criterion for regularity of a boundary point.<ref name="FKS"/><ref name="FKJ1"/><ref name="FKJ2"/>
If $\mathcal L$ consists of purely second order operators of the form $Lu = \mathrm{tr} \, A \cdot D^2 u$ with $\lambda I \leq A \leq \Lambda I$, then $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ denote the usual extremal Pucci operators, which have the formula
\begin{align*}
P^+(D^2 u) &= \Lambda \ \mathrm{tr}(D^2u^+) - \lambda \ \mathrm{tr}(D^2u^-)\\
P^-(D^2 u) &= \lambda \ \mathrm{tr}(D^2u^+) - \Lambda \ \mathrm{tr}(D^2u^-)
\end{align*}


The translation invariance of the operator in the $x$-directions can be applied to obtain higher regularity results and Liouville type properties.<ref name="CSS"/>
If $\mathcal{L}$ consists of all [[linear integro-differential operator|symmetric purely integro-differential operators, uniformly elliptic of order $s$]], then the extremal operators have the formula<ref name="S"/>
\begin{align*}
M^+\, u &= \int_{\R^n} \left( \Lambda \delta u(x,y)^+ - \lambda \delta u(x,y)^- \right) \frac{(2-s)}{|y|^{n+s}} \mathrm d y \\
M^-\, u &= \int_{\R^n} \left( \lambda \delta u(x,y)^+ - \Lambda \delta u(x,y)^- \right) \frac{(2-s)}{|y|^{n+s}} \mathrm d y
\end{align*}
where $\delta u(x,y) = (u(x+y) + u(x-y) - 2u(x))$. These two extremal operator are sometimes called "the ''monster'' Pucci operators" (even though there are other operators that are easily more "monstruous")


The above extension technique is closely related to the concept of trace of a diffusion on a hyperplane.<ref name="MO"/><ref name="D"/>
== References ==
 
==Fractional powers of more general operators==
In a similar way, extension problem for fractional powers $L^s$ of a general self-adjoint nonnegative linear differential operators $L$ in a domain $\Omega \subset \mathbb{R}^n$ (or more generally, a Hilbert space) can be constructed. In this case, the extension into a "cylinder" $\Omega \times [0, \infty)$ is considered. Let $U$ be a solution of
\[ \partial_y (y^{1-2s} \partial_y U(x, y)) - L_x U(x, y) = 0 \]
defined on $\Omega \times [0,\infty)$, with boundary conditions along $\partial \Omega \times [0,\infty)$ equal to the boundary conditions for $L$. Then
\begin{equation}
L^s = C_{s} \lim_{y\rightarrow 0} y^{1-2s} U_y(x,y).
\end{equation}
If $L$ has a purely discrete spectrum on $\Omega$, the operator $(-L)^s$ has the same eigenfunctions as $L$, and its eigenvalues are $\{\lambda_i^s\}$, where the $\{\lambda_i\}$ are the eigenvalues of $(-L)$.
 
For example, $L$ can be the Dirichlet Laplacian in $\Omega$.<ref name="CT"/> Note that $(-L)^s$ is not the same as the fractional Laplacian, except when $\Omega = \mathbb{R}^n$.
 
==More general non-local operators==
Let $L$ be as above, and consider the Dirichlet-to-Neumann operator $A$ related to the elliptic equation
\[ \partial_y (w(y) \partial_y U(x, y)) + L_x U(x, y) = 0 \]
in the upper half-plane. Then $A = f(-L)$ for some [[operator monotone function]] $f$. Conversely, for any operator monotone $f$, there is an appropriate extension problem for $f(-L)$. (This identification requires some conditions on $w(y)$ which ensure the extension problem is well-posed.)
 
The relation between $w$ and $f$ is equivalent to the Krein correspondence, and can be described as follows.<ref name="KW"/><ref name="SSV"/> For $\lambda \ge 0$, let $g_\lambda$ be the nonincreasing positive solution of the ODE
\[ \partial_y (w(y) \partial_y g_\lambda(y)) = \lambda g_\lambda(y) \]
for $y \ge 0$, satisfying $g_\lambda(0) = 1$. Furthermore, let $h$ be the nondecreasing solution of
\[ \partial_y (w(y) \partial_y h(y)) = 0 \]
satisfying $h(0) = 0$ and $h(1) = 1$. Then
\[ f(\lambda) = \lim_{y \to 0^+} \frac{1 - g_\lambda(y)}{h(y)} . \]
One can prove that $f$ defined above is operator monotone, and conversely, for any operator monotone $f$ one can find $w$ for which the above identity holds. Noteworthy, there are relatively few explicit pairs of corresponding $w$ and $f$.
 
Suppose now that $U(x, y)$ is a sufficiently regular solution of the extension problem
\[ \partial_y (w(y) \partial_y U(x, y)) + L_x U(x, y) = 0 . \]
For simplicity, suppose that the spectrum of $L$ is discrete. Let $\varphi$ be an eigenfunction of $-L$ with eigenvalue $\lambda$, and denote $U_\varphi(y) = \langle U(\cdot, y), \varphi \rangle$. Then $U_\varphi$ is a solution of the ODE
\[ \partial_y (w(y) \partial_y U_\varphi(y)) + \lambda U_\varphi(y) = 0 . \]
Hence, $U_\varphi(y) = U_\varphi(0) g_\lambda(y)$, and
\[ -\lim_{y \to 0^+} \frac{U_\varphi(y) - U_\varphi(0)}{h(y)} = f(\lambda) U_\varphi(0) . \]
It follows that
\[ -\lim_{y \to 0^+} \frac{U(\cdot, y) - U_\varphi(\cdot, 0)}{h(y)} = f(-L) U(\cdot, 0) , \]
or equivalently
\[ -\lim_{y \to 0^+} \frac{\partial_y U(\cdot, y)}{h'(y)} = f(-L) U(\cdot, 0) . \]
This proves that the Dirichlet-to-Neumann operator is indeed equal to $f(-L)$. The proof in the continuous spectrum case is similar.<ref name="K"/><ref name="KSV"/>
 
[[Operator monotone function]]s, often called complete Bernstein functions, form a subclass of [[Bernstein function]]s. Hence, existence of the extension problem is closely related to the concept of [[subordination]]. Operators of the form $f(-\Delta)$ for an operator monotone $f$ admit an explicit [[Operator monotone function#Operator monotone functions of the Laplacian|description]]. This gives a fairly explicit condition for the existence of the extension problem for a given translation-invariant non-local operator.
 
==Relationship with Scattering operators==
There is an identification between the fractional Laplacian defined by the extension and the fractional Paneitz operator from Scattering Theory when the order of the operator is less than 1.<ref name="CG"/>
<!--This is a stub, to be expanded on later.-->
 
==References==
{{reflist|refs=
{{reflist|refs=
<ref name="CG">{{Citation | last1=González | first1=Maria del Mar | last2=Chang | first2=Sun-Yung Alice | title=Fractional Laplacian in conformal geometry | url=http://dx.doi.org/10.1016/j.aim.2010.07.016 | doi=10.1016/j.aim.2010.07.016 | year=2011 | journal=Advances in Mathematics | issn=0001-8708 | volume=226 | issue=2 | pages=1410–1432}}</ref>
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Hölder estimates for solutions of integro-differential equations like the fractional Laplace | url=http://dx.doi.org/10.1512/iumj.2006.55.2706 | doi=10.1512/iumj.2006.55.2706 | year=2006 | journal=Indiana University Mathematics Journal | issn=0022-2518 | volume=55 | issue=3 | pages=1155–1174}}</ref>
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=An extension problem related to the fractional Laplacian | url=http://dx.doi.org.ezproxy.lib.utexas.edu/10.1080/03605300600987306 | doi=10.1080/03605300600987306 | year=2007 | journal=Communications in Partial Differential Equations | issn=0360-5302 | volume=32 | issue=7 | pages=1245–1260}}</ref>
<ref name="CSS">{{Citation | last1=Caffarelli | first1=Luis | last2=Salsa | first2=Sandro | last3=Silvestre | first3=Luis | title=Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian | url=http://dx.doi.org/10.1007/s00222-007-0086-6 | doi=10.1007/s00222-007-0086-6 | year=2008 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=171 | issue=2 | pages=425–461}}</ref>
<ref name="CT">{{Citation | last1=Tan | first1=Jinggang | last2=Cabré | first2=Xavier | title=Positive solutions of nonlinear problems involving the square root of the Laplacian | url=http://dx.doi.org/10.1016/j.aim.2010.01.025 | doi=10.1016/j.aim.2010.01.025 | year=2010 | journal=Advances in Mathematics | issn=0001-8708 | volume=224 | issue=5 | pages=2052–2093}}</ref>
<ref name="FKS">{{Citation | last1=Fabes | first1=Eugene B. | last2=Kenig | first2=Carlos E. | last3=Serapioni | first3=Raul P. | title=The local regularity of solutions of degenerate elliptic equations | url=http://dx.doi.org/10.1080/03605308208820218 | doi=10.1080/03605308208820218 | year=1982 | journal=Communications in Partial Differential Equations | issn=0360-5302 | volume=7 | issue=1 | pages=77–116}}</ref>
<ref name="FKJ1">{{Citation | last1=Fabes | first1=Eugene B. | last2=Kenig | first2=Carlos E. | last3=Jerison | first3=David | title=Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) | publisher=Wadsworth | series=Wadsworth Math. Ser. | year=1983 | chapter=Boundary behavior of solutions to degenerate elliptic equations | pages=577–589}}</ref>
<ref name="FKJ2">{{Citation | last1=Fabes | first1=Eugene B. | last2=Jerison | first2=David | last3=Kenig | first3=Carlos E. | title=The Wiener test for degenerate elliptic equations | url=http://www.numdam.org/item?id=AIF_1982__32_3_151_0 | year=1982 | journal=[[Annales de l'Institut Fourier|Université de Grenoble. Annales de l'Institut Fourier]] | issn=0373-0956 | volume=32 | issue=3 | pages=151–182}}</ref>
<ref name="D">{{Citation | last1=DeBlassie | first1=R. D. | title=The first exit time of a two-dimensional symmetric stable process from a wedge | url=http://dx.doi.org/10.1214/aop/1176990735 | doi=10.1214/aop/1176990735 | year=1990 | journal=Ann. Probab. | issn=0091-1798 | volume=18 | pages=1034–1070}}</ref>
<ref name="MO">{{Citation | last1=Molchanov | first1=S. A. | last2=Ostrovski | first2=E. | title=Symmetric stable processes as traces of degenerate diffusion processes | url=http://dx.doi.org/10.1137/1114012 | doi=10.1137/1114012 | year=1969 | journal=Theor Probab. Appl. | volume=14 | pages=128–131}}</ref>
<ref name="KW">{{Citation | last1=Kotani | first1=S. | last2=Watanabe | first1=S. | title=Krein’s spectral theory of strings and
generalized diffusion processes | url=http://dx.doi.org/10.1007/BFb0093046 | doi=10.1007/BFb009304 | year=1982 | pages=235–259 | booktitle=Functional Analysis in Markov Processes | series=Lecture Notes in Mathematics | volume=923 | editor1-last=Fukushima | editor1-first=M. | publisher=Springer, Berlin / Heidelberg | isbn=978-3-540-11484-0}}</ref>
<ref name="SSV">{{Citation | last1=Schilling | first1=R. | last2=Song | first2=R. | last3=Vondraček | first3=Z. | title=Bernstein functions. Theory and Applications | year=2010 | publisher=de Gruyter, Berlin | series=Studies in Mathematics | volume=37 | url=http://dx.doi.org/10.1515/9783110215311 | doi=10.1515/9783110215311}}</ref>
<ref name="K">{{Citation | last1=Kwaśnicki | first1=M. | title=Spectral analysis of subordinate Brownian motions on the half-line | year=2011 | journal=Studia Math. | volume=206 | pages=211–271 | url=http://dx.doi.org/10.4064/sm206-3-2 | doi=10.4064/sm206-3-2}}</ref>
<ref name="KSV">{{Citation | last1=Kim | first1=P. | last2=Song | first2=R. | last3=Vondraček | first3=Z. | title=On harmonic functions for trace processes | url=http://dx.doi.org/10.1002/mana.200910008 | doi=10.1002/mana.200910008 | year=2011 | journal=Math. Nachr. | volume=284 | pages=1889–1902}}</ref>
}}
}}


{{stub}}
[[Category:Fully nonlinear equations]]

Latest revision as of 21:43, 15 April 2015

The extremal operator associated to some class of linear operators $\mathcal{L}$ represent the maximal and minimal value that $Lu(x)$ can take from all possible choices of $L \in \mathcal L$.

The extremal operators are used to define uniform ellipticity for nonlocal operators. In fact, the extremal operators are also the maximal and minimal nonlinear uniformly elliptic operators with respect to $\mathcal L$ that vanish at zero.

Given any family of linear integro-differential operators $\mathcal{L}$, we define the extremal operators $M^+_\mathcal{L}$ and $M^-_\mathcal{L}$: \begin{align*} M^+_\mathcal{L} u(x) &= \sup_{L \in \mathcal{L}} \, L u(x) \\ M^-_\mathcal{L} u(x) &= \inf_{L \in \mathcal{L}} \, L u(x) \end{align*}

If $\mathcal L$ consists of purely second order operators of the form $Lu = \mathrm{tr} \, A \cdot D^2 u$ with $\lambda I \leq A \leq \Lambda I$, then $M^+_{\mathcal L}$ and $M^-_{\mathcal L}$ denote the usual extremal Pucci operators, which have the formula \begin{align*} P^+(D^2 u) &= \Lambda \ \mathrm{tr}(D^2u^+) - \lambda \ \mathrm{tr}(D^2u^-)\\ P^-(D^2 u) &= \lambda \ \mathrm{tr}(D^2u^+) - \Lambda \ \mathrm{tr}(D^2u^-) \end{align*}

If $\mathcal{L}$ consists of all symmetric purely integro-differential operators, uniformly elliptic of order $s$, then the extremal operators have the formula[1] \begin{align*} M^+\, u &= \int_{\R^n} \left( \Lambda \delta u(x,y)^+ - \lambda \delta u(x,y)^- \right) \frac{(2-s)}{|y|^{n+s}} \mathrm d y \\ M^-\, u &= \int_{\R^n} \left( \lambda \delta u(x,y)^+ - \Lambda \delta u(x,y)^- \right) \frac{(2-s)}{|y|^{n+s}} \mathrm d y \end{align*} where $\delta u(x,y) = (u(x+y) + u(x-y) - 2u(x))$. These two extremal operator are sometimes called "the monster Pucci operators" (even though there are other operators that are easily more "monstruous")

References