Category:Quasilinear equations and Hele-Shaw: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Hector
No edit summary
 
Line 1: Line 1:
A quasilinear equation is one that is linear in all but the terms involving the highest order derivatives (whether they are of fractional order or not). For instance, the following equations are all quasilinear (and not semilinear)
{{stub}}


\[u_t-\mbox{div} \left ( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right ) = 0 \]
The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates<ref name="MR0097227"/>. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain,
\begin{align*}
\Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\
\frac{\partial_t u}{|Du|} &= |Du| \text{ on } \partial \{u>0\}\cap \Omega
\end{align*}
The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side).
Particular solutions are given for instance by the planar profiles
\[
P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad  A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0
\]


<center> [[Mean curvature flow]] </center>
Non-local aspects of the equation can be appreciated by noticing that a given deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.


\[ u_t = \mbox{div} \left ( u \nabla \mathcal{K_\alpha} u\right ),\;\;\; \mathcal{K_\alpha} u = u * |x|^{-n+\alpha} \]  
Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives
\[
\frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2
\]
By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies
\begin{align*}
\Delta w &= 0 \text{ in } \{x_n>0\}\\
\partial_t w &= a\partial_n w \text{ on } \{x_n=0\}
\end{align*}
Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$,
\[
\partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w
\]


<center> [[Nonlocal porous medium equation]] </center>
== References ==
{{reflist|refs=


<ref name="MR0097227">{{Citation | last1=Saffman | first1= P. G. | last2=Taylor | first2= Geoffrey | title=The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid | journal=Proc. Roy. Soc. London. Ser. A | issn=0962-8444 | year=1958 | volume=245 | pages=312--329. (2 plates)}}</ref>


Equations which are not quasilinear are called [[Fully nonlinear equations]], which include for instance [[Monge Ampére]] and [[Fully nonlinear integro-differential equations]]. Note that all [[Semilinear equations]] are automatically quasilinear.
}}
 
Note: In this category are listed all equations which are quasilinear  and NOT semilinear.  Strictly speaking, all semilinear equations ought to be listed here aswell, however, as the specific methods and questions are so different in both categories (i.e. quasilinear techniques may give results for semilinear equations which are weaker  when compared to the more powerful methods tailor-made for semilinear ones), thus they are listed only in their own category.

Revision as of 12:20, 29 July 2016

This article is a stub. You can help this nonlocal wiki by expanding it.

The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates[1]. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain, \begin{align*} \Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\ \frac{\partial_t u}{|Du|} &= |Du| \text{ on } \partial \{u>0\}\cap \Omega \end{align*} The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side). Particular solutions are given for instance by the planar profiles \[ P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0 \]

Non-local aspects of the equation can be appreciated by noticing that a given deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.

Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives \[ \frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2 \] By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies \begin{align*} \Delta w &= 0 \text{ in } \{x_n>0\}\\ \partial_t w &= a\partial_n w \text{ on } \{x_n=0\} \end{align*} Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$, \[ \partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w \]

References

  1. Saffman, P. G.; Taylor, Geoffrey (1958), "The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid", Proc. Roy. Soc. London. Ser. A 245: 312--329. (2 plates), ISSN 0962-8444 

Pages in category "Quasilinear equations"

The following 2 pages are in this category, out of 2 total.