Open problems and Hele-Shaw: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>Hector
No edit summary
 
Line 1: Line 1:
== Well posedness of the supercritical [[surface quasi-geostrophic equation]] ==
{{stub}}
Let $\theta_0 : \R^2 \to \R$ be a smooth function either with compact support or periodic. Let $s \in (0,1/2)$. Is there a global classical solution $\theta :\R^2 \to \R$ for the SQG equation?
\begin{align*}
\theta(x,0) &= \theta_0(x) \\
\theta_t + u \cdot \nabla \theta &= 0 \qquad \text{in } \R^2 \times (0,+\infty)
\end{align*}
where $u = R^\perp \theta$ and $R$ stands for the Riesz transform.
 
This is a very difficult open problem. It is believed that a solution would be a major step towards the understanding of Navier-Stokes equation. In the supercritical regime $s\in (0,1/2)$, the effect if the drift term is larger than the diffusion in small scales. Therefore, it seems unlikely that a proof of well posedness could be achieved with the methods currently known and listed in this wiki.
 
Note that if the relation between $u$ and $\theta$ was changed by $u = R\theta$, then the equation is ill posed. This suggests that the divergence free nature of $u$ must play an important role, unlike the critical and subcritical cases $s \geq 1/2$.


== Regularity of [[nonlocal minimal surfaces]] ==
The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates<ref name="MR0097227"/>. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain,
 
A nonlocal minimal surface that is sufficiently flat is known to be smooth <ref name="CRS"/>. The possibility of singularities in the general case reduces to the analysis of a possible existence of nonlocal minimal cones. The problem can be stated as follows.
 
For any $s \in (0,1)$, and any natural number $n$, is there any set $A \in \R^n$, other than a half space, such that
# $A$ is a cone: $\lambda A = A$ for any $\lambda > 0$.
# If $B$ is any set in $\R^n$ which coincides with $A$ outside of a compact set $C$, then the following inequality holds
\[ \int_C \int_{C} \frac{|\chi_A(x) - \chi_A(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y + 2 \int_C \int_{\R^n \setminus C} \frac{|\chi_A(x) - \chi_A(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y \leq \int_C \int_{C} \frac{|\chi_B(x) - \chi_B(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y + 2\int_C \int_{\R^n \setminus C} \frac{|\chi_B(x) - \chi_B(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y. \]
 
When $s$ is sufficiently close to one, such set does not exist if $n < 8$.
 
== An integral ABP estimate ==
 
The nonlocal version of the [[Alexadroff-Bakelman-Pucci estimate]] holds either for a right hand side in $L^\infty$ <ref name="CS"/> (in which the integral right hand side is approximated by a discrete sum) or under very restrictive assumptions on the kernels <ref name="GS"/>. Would the following result be true?
 
Assume $u_n \leq 0$ outside $B_1$ and for all $x \in B_1$,
\[ \int_{\R^n} (u(x+y)-u(x)) K(x,y) \mathrm d y \geq \chi_{A_n}(x). \]
Where $\chi_{A_n}$ stands for the characteristic function of the sets $A_n$. Assume that the kernels $K$ satisfy symmetry and a uniform ellipticity condition
\begin{align*}
\begin{align*}
K(x,y) &= K(x,-y) \\
\Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\
\lambda |y|^{-n-s} \leq K(x,y) &\leq \Lambda |y|^{-n-s} \qquad \text{for some } 0<\lambda<\Lambda \text{ and } s \in (0,2).
\frac{\partial_t u}{|Du|} &= |Du| \text{ on } \partial \{u>0\}\cap \Omega
\end{align*}
\end{align*}
If $|A_n|\to 0$ as $n \to +\infty$, is it true that $\sup u_n^+ \to 0$ as well?
The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side).
Particular solutions are given for instance by the planar profiles
\[
P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad  A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0
\]


This type of estimate is currently known only under strong structural hypothesis on the kernels $K$.<ref name="GS"/>
Non-local aspects of the equation can be appreciated by noticing that a given deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.


== A [[comparison principle]] for $x$-dependent nonlocal equations which are '''not''' in the Levy-Ito form ==
Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives
Consider two continuous functions $u$ and $v$ such that
\[
\frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2
\]
By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies
\begin{align*}
\begin{align*}
u(x) &\leq v(x) \qquad \text{for all $x$ outside some set } \Omega,\\
\Delta w &= 0 \text{ in } \{x_n>0\}\\
F(x,\{I_\alpha u(x)\}) &\geq F(x,\{I_\alpha v(x)\})\qquad \text{for all $x \in \Omega$}.
\partial_t w &= a\partial_n w \text{ on } \{x_n=0\}
\end{align*}
\end{align*}
Is it true that $u \leq v$ in $\Omega$ as well?
Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$,
\[
\partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w
\]


It is natural to expect this result to hold if $F$ is continuous respect to $x$ and the [[linear integro-differential operators]] $I_\alpha$ satisfy some nondegeneracy condition and continuity respect to $x$, e.g.
== References ==
\begin{align*}
{{reflist|refs=
I[u] = \int (u(x+z) - u(x) - Du(x)\cdot z 1_{B}(z))\mu_x(dz)
\end{align*}
where $(\mu_x)_x$ is a family of L\'evy measures, H\"older continous with respect to $x$?
 
Currently the comparison principle is only known if the kernels are continuous when written in the Levy-Ito form.<ref name="BI"/>
 
== A local [[Nonlocal Evans-Krylov theorem|$C^{s+\alpha}$ estimate]] for the the [[Monster Pucci operator | Pucci equation]] of order $s$ ==
 
Assume that $u : \R^n \to \R$ is a bounded function satisfying the equation
\[ M^+ u = 0 \qquad \text{in } B_1.\]
Here $M^+$ is the [[Monster Pucci operator]] of order $s$. Is it true that $u \in C^{s+\alpha}(B_{1/2})$?


In the proof of the [[Nonlocal Evans-Krylov theorem]] <ref name="CS3"/>, it is assumed that the second derivatives of the kernels satisfy certain bounds. Because of this, it cannot be applied to this case.
<ref name="MR0097227">{{Citation | last1=Saffman | first1= P. G. | last2=Taylor | first2= Geoffrey | title=The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid | journal=Proc. Roy. Soc. London. Ser. A | issn=0962-8444 | year=1958 | volume=245 | pages=312--329. (2 plates)}}</ref>


UPDATE: this question was resolved by Joaquim Serra <ref name="serra2014c" />.
== Optimal regularity for the [[obstacle problem]] for a general integro-differential operator ==
Let $u$ be the solution to the [[obstacle problem for the fractional laplacian]],
\begin{align*}
u &\geq \varphi \qquad \text{in } \R^n, \\
(-\Delta)^{s/2} u &\geq 0 \qquad \text{in } \R^n, \\
(-\Delta)^{s/2} u &= 0 \qquad \text{in } \{u>\varphi\}, \\
\end{align*}
where $\varphi$ is a smooth compactly supported function. It is known that $u \in C^{1,s/2}$ (where $s$ coincides with the order of the fractional Laplacian). This regularity is optimal in the sense that one can construct solutions that are not in $C^{1,s/2+\varepsilon}$ for any $\varepsilon>0$. One can consider the same problem replacing the fractional Laplacian by any other nonlocal operator. In fact, this problem corresponds to the [[optimal stopping problem]] in stochastic control, with applications to mathematical finance. The fractional Laplacian is just the particular case when the [[Levy  process]] involved is $\alpha$-stable and radially symmetric. The optimal regularity for the general problem is currently an open problem. Even in the linear case with constant coefficients this is nontrivial. If $u$ is a solution of
\begin{align*}
u &\geq \varphi \qquad \text{in } \R^n, \\
L u &\leq 0 \qquad \text{in } \R^n, \\
L u &= 0 \qquad \text{in } \{u>\varphi\}, \\
\end{align*}
where $L$ is a [[linear integro-differential operator]], then what is the optimal regularity we can obtain for $u$?
The optimal regularity would naturally depend on some assumptions on the linear operator $L$. If $L$ is a purely integro-differential with a kernel $K$ satisfying the usual ellipticity conditions
\begin{align*}
K(y) &= K(-y) \\
\frac{\lambda(2-s)}{ |y|^{n+s}} \leq K(y) &\leq \frac{\Lambda(2-s)}{ |y|^{n+s}} \qquad \text{for some } 0<\lambda<\Lambda \text{ and } s \in (0,2),
\end{align*}
it is natural to expect the solution $u$ to be $C^s$, but this regularity is not optimal. Is the optimal regularity going to be $C^{1,s/2}$ as in the fractional Laplacian case? Most probably some extra assumption on the kernel will be needed.
A solution to this problem would be very interesting if it provides an optimal regularity result for a natural family of kernels. If the assumption is something hard to check (like for example that there exists an extension problem whose Dirichlet to Neumann map is $L$), then the result may not be that interesting.
== Holder estimates for drift-diffusion equations (sharp assumptions for $b$ in the case $s>1/2$) ==
Consider a [[drift-diffusion equation]] of the form
\[ u_t + b \cdot \nabla u + (-\Delta)^s u = 0.\]
The solution $u$ is known to become Holder continuous under a variety of assumptions on the vector field $b$. If we assume that $\mathrm{div}\, b = 0$, we may expect that the required assumptions are slightly more flexible. Indeed, if $s=1/2$, the solution $u$ becomes Holder for positive time if $b \in L^\infty(BMO)$ <ref name="CV"/>. On the other hand, if $s=1$, the solution $u$ becomes Holder continuous for positive time if $b \in L^\infty(BMO^{-1})$ (if $b$ is the sum of derivatives of $BMO$ functions) <ref name="FV"/> <ref name="SSSZ"/>. A natural conjecture would be that the same result applies for $s \in (1/2,1)$ if $b \in L^\infty(BMO^{2s-1})$ (meaning that $(-\Delta)^{1-2s} b \in L^\infty(BMO)$).
The case $s < 1/2$ is completely understood and the assumption $\mathrm{div}\, b =0$ is not even necessary. For $s \in (1/2,1)$, only some perturbative results seem to be known under stronger assumptions. It is conceivable that the approach of Caffarelli and Vasseur <ref name="CV"/> can be worked out assuming that $b \in L^\infty(L^p)$ for a critical power $p$.
== Complete understanding of free boundary points in the [[fractional obstacle problem]] ==
Some free boundary points of the [[fractional obstacle problem]] are classified as regular and the free boundary is known to be smooth around them <ref name="CSS"/>. Other points on the free boundary are classified as singular, and they are shown to be contained in a lower dimensional differentiable surface, and therefore to be rare <ref name="GP"/>. However, there may be other points on the free boundary that do not fall under those two categories. Two questions need to be answered.\
# Can there be any point on the free boundary that is neither regular nor singular? It is easy to produce examples in the [[thin obstacle problem]], using the [[extension technique]]. However, it is not clear if such examples can be made in the original formulation of the [[fractional obstacle problem]] because of the decay at infinity requirement.
# In case that a point of a third category exist, is the free boundary smooth around these points in the ''third category''?
Other open problems concerning the [[fractional obstacle problem]] are
# Further regularity of the free boundary in smoother classes than $C^{1,\alpha}$.
# Regularity of the free boundary for the parabolic problem.
== Holder estimates for parabolic equations with variable order ==
[[Holder estimates]] are known for elliptic and parabolic integro-differential equations with rough kernels. For elliptic equations, these estimates are available even when the order of the equation changes from point to point <ref name="BK"/> <ref name="S" />. Such estimate is not available for parabolic equations and it is not clear whether they hold.
More precisely, we would like to study a parabolic equation of the form
\[ u_t = \int_{\R^n} (u(x+y) - u(x)) K(x,y) dy.\]
Here $K$ is symmetric (i.e. $K(x,y) = K(x,-y)$) and satisfies the bounds
\[ \frac \lambda {|y|^{n+s(x)}} \leq K(x,y) \leq \frac \Lambda {|y|^{n+s(x)}}.\]
The order of the equation $s(x) \in (0,1)$ changes from point to point and it should stay strictly away from zero. It would also make sense to study other families of [[linear integro-differential operators]]. Does a parabolic [[Holder estimate]] hold in this case?
== References ==
{{reflist|refs=
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity theory for fully nonlinear integro-differential equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 | year=2009 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
<ref name="CS3">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=The Evans-Krylov theorem for non local fully non linear equations | year=to appear | journal=[[Annals of Mathematics]] | issn=0003-486X}}</ref>
<ref name="CV">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Vasseur | first2=Alexis | title=Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation | url=http://dx.doi.org/10.4007/annals.2010.171.1903 | doi=10.4007/annals.2010.171.1903 | year=2010 | journal=[[Annals of Mathematics|Annals of Mathematics. Second Series]] | issn=0003-486X | volume=171 | issue=3 | pages=1903–1930}}</ref>
<ref name="SSSZ">{{Citation | last1=Seregin | first1=G. | last2=Silvestre | first2=Luis | last3=Sverak | first3=V. | last4=Zlatos | first4=A. | title=On divergence-free drifts | year=2010 | journal=Arxiv preprint arXiv:1010.6025}}</ref>
<ref name="FV">{{Citation | last1=Friedlander | first1=S. | last2=Vicol | first2=V. | title=Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics | year=2011 | journal=Annales de l'Institut Henri Poincare (C) Non Linear Analysis}}</ref>
<ref name="CRS">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Roquejoffre | first2=Jean Michel |last3= Savin | first3= Ovidiu | title= Nonlocal Minimal Surfaces | url=http://onlinelibrary.wiley.com/doi/10.1002/cpa.20331/abstract | doi=10.1002/cpa.20331 | year=2010 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0003-486X | volume=63 | issue=9 | pages=1111–1144}}</ref>
<ref name="GS">{{Citation | last1=Guillen | first1=N. | last2=Schwab | first2=R. | title=Aleksandrov-Bakelman-Pucci Type Estimates For Integro-Differential Equations | year=2010 | journal=Arxiv preprint arXiv:1101.0279}}</ref>
<ref name="CSS">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Salsa | first2=Sandro | last3=Silvestre | first3=Luis | title=Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian | url=http://dx.doi.org/10.1007/s00222-007-0086-6 | doi=10.1007/s00222-007-0086-6 | year=2008 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=171 | issue=2 | pages=425–461}}</ref>
<ref name="GP">{{Citation | last1=Petrosyan | first1=A. | last2=Garofalo | first2=N. | title=Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=2009 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=177 | issue=2 | pages=415–461}}</ref>
<ref name="GS">{{Citation | last1=Guillen | first1=N. | last2=Schwab | first2=R. | title=Aleksandrov-bakelman-pucci type estimates for integro-differential equations | year=2010 | journal=Arxiv preprint arXiv:1101.0279}}</ref>
<ref name="BI">{{Citation | last1=Barles | first1=Guy | last2=Imbert | first2=Cyril | title=Second-order elliptic integro-differential equations: viscosity solutions' theory revisited | url=http://dx.doi.org/10.1016/j.anihpc.2007.02.007 | doi=10.1016/j.anihpc.2007.02.007 | year=2008 | journal=Annales de l'Institut Henri Poincaré. Analyse Non Linéaire | issn=0294-1449 | volume=25 | issue=3 | pages=567–585}}</ref>
<ref name="BK">{{Citation | last1=Bass | first1=Richard F. | last2=Kassmann |
first2=Moritz | title=Hölder continuity of harmonic functions with respect to
operators of variable order | url=http://dx.doi.org/10.1080/03605300500257677 |
doi=10.1080/03605300500257677 | year=2005 | journal=Communications in Partial
Differential Equations | issn=0360-5302 | volume=30 | issue=7 |
pages=1249–1259}}</ref>
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Hölder
estimates for solutions of integro-differential equations like the fractional
Laplace | url=http://dx.doi.org/10.1512/iumj.2006.55.2706 |
doi=10.1512/iumj.2006.55.2706 | year=2006 | journal=Indiana University
Mathematics Journal | issn=0022-2518 | volume=55 | issue=3 |
pages=1155–1174}}</ref>
<ref name="serra2014c">{{Citation | last1=Serra | first1= Joaquim | title=$C^{\sigma+\alpha}$ regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels | journal=arXiv preprint arXiv:1405.0930}}</ref>
}}
}}

Revision as of 12:20, 29 July 2016

This article is a stub. You can help this nonlocal wiki by expanding it.

The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates[1]. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain, \begin{align*} \Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\ \frac{\partial_t u}{|Du|} &= |Du| \text{ on } \partial \{u>0\}\cap \Omega \end{align*} The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side). Particular solutions are given for instance by the planar profiles \[ P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0 \]

Non-local aspects of the equation can be appreciated by noticing that a given deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.

Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives \[ \frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2 \] By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies \begin{align*} \Delta w &= 0 \text{ in } \{x_n>0\}\\ \partial_t w &= a\partial_n w \text{ on } \{x_n=0\} \end{align*} Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$, \[ \partial_t w = a\Delta_{\mathbb R^{n-1}}^{1/2} w \]

References

  1. Saffman, P. G.; Taylor, Geoffrey (1958), "The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid", Proc. Roy. Soc. London. Ser. A 245: 312--329. (2 plates), ISSN 0962-8444