Hele-Shaw

From nonlocal pde
Revision as of 15:24, 28 July 2016 by imported>Hector (Created page with "{{stub}} The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates<ref name="MR0097227"/>. The following equations are given for a non-nega...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This article is a stub. You can help this nonlocal wiki by expanding it.

The Hele-Shaw model describes an incompressible flow lying between two nearby horizontal plates[1]. The following equations are given for a non-negative pressure $u$, supported in in a time dependent domain, \begin{align*} \Delta u &= 0 \text{ in } \Omega^+ = \{u>0\}\cap \Omega\\ \frac{\partial_t u}{|Du|} &= |Du| \text{ on } \partial \{u>0\}\cap \Omega \end{align*} The first equation expresses the incompressibility of the fluid. The second equation, also known as the free boundary condition, says that the normal speed of the inter-phase (left-hand side) is the velocity of the fluid (right-hand side). Particular solutions are given for instance by the planar profiles \[ P(x,t) = a(t)(x_n-A(t))_+ \qquad\text{where}\qquad A(t) = \int_t^0 a(s)ds \qquad\text{and}\qquad a(t)>0 \]

Non-local aspects of the equation can be appreciated by noticing that a given deformation of the domain $\Omega^+$ affects all the values of $|Du|$, at least in the corresponding connected component. To be more precise let us also formally show that the linearization about a planar profile leads to a fractional heat equation of order one.

Let $u = P + \varepsilon v$. Then $u$ and $P$ harmonic in their positivity sets imply $v$ harmonic in the intersection, notice that as $\varepsilon\searrow0$, $v$ becomes harmonic in $\{x_n>A(t)\}$. On the other hand, the free boundary relation over $\{x_n=A(t)\}$ gives \[ \frac{a^2+\varepsilon \partial_t v}{|ae_n+\varepsilon Dv|} = |ae_n+\varepsilon Dv| \qquad\Rightarrow\qquad \partial_t v = 2a\partial_n v+\varepsilon |Dv|^2 \] By taking the reparametrization $w(x,t) = v(x+Ae_n,t)$ and letting $\varepsilon\searrow0$ we get that $w$ satisfies \begin{align*} \Delta w &= 0 \text{ in } \{x_n>0\}\\ \partial_t w &= a\partial_n w \text{ on } \{x_n=0\} \end{align*} Or in terms of the half-laplacian in $\mathbb R^{n-1} = \{x_n=0\}$, \[ \partial_t w = a\Delta_{\mathbb R^{n-1}} w \]

References

  1. Saffman, P. G.; Taylor, Geoffrey (1958), "The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid", Proc. Roy. Soc. London. Ser. A 245: 312--329. (2 plates), ISSN 0962-8444