Upcoming events and Extension technique: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>RayAYang
(create)
 
Line 1: Line 1:
This is a list in chronological order of upcoming events that may be of interest to readers of this wiki. Feel free to add any events that you feel qualify!
The fractional Laplace operator $(-\Delta)^s$ on $\mathbb{R}^n$ is the Dirichlet-to-Neumann operator of a degenerate elliptic equation on the upper half-space $\mathbb{R}^{n+1}_+$.


==2011==
Let
*June 20-24 [http://math.utaustinportugal.org/summer011/index.phtml CoLab] workshop on Nonlinear PDEs at [http://www.math.ist.utl.pt/ Instituto Superior Técnico] in Lisbon, Portugal.
$$U:\mathbb{R}^n \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$
*June 27, 2011-July 1, 2011 [http://www.ma1.upc.edu/recerca/seminaris/JISD2011/indexjisd2011.html JISD 2011] at the [http://www.upc.edu/ Universitat Politècnica de Catalunya (UPC)] in Barcelona, Spain.
be a function satisfying
 
\begin{equation}
==2012==
\label{eqn:Main}
*February 27-March 2, 2012: [http://www.ipam.ucla.edu/programs/pde2012/ Program in Nonlocal PDEs, Variational Problems and their Applications at IPAM]. Application deadline for funding support is January 2, 2012.
\nabla \cdot (y^{1-2s} \nabla U(x,y)) = 0
* May 2012: [http://math.uchicago.edu/~luis/special-month/index.html Special program in Chicago with minicourses in non local equations.] ([[Lecture notes of Silvestre's course]] available.)
\end{equation}
* July 2012: [http://www.math.uni-bielefeld.de/nloc-school/ Summer School 2012 on Nonlocal Operators; Bielefeld University]
on the upper half-space, lying inside the appropriately weighted Sobolev space $\dot{H}(1-2s,\mathbb{R}^{n+1}_+)$. Then if we let $u(x) = U(x,0)$, we have
* July 2012: [http://www.math.uni-bielefeld.de/nloc2012/ Nonlocal Operators: Analysis, Probability, Geometry and Applications; Bielefeld University]
\begin{equation}
 
\label{eqn:Neumann}
==2013==
(-\Delta)^s u(x) = -C_{n,s} \lim_{y\rightarrow 0} y^{1-2s} \partial_y U(x,y).
*Milan, June 17-21: [http://www.mat.unimi.it/users/rocca/AdvPDE Recent advances in partial differential equations and applications]
\end{equation}
*Barcelona, July 15-19: [http://www.ma1.upc.edu/recerca/seminaris-recerca/jisd2013/syllabus13 11th Workshop on Interactions between Dynamical Systems and Partial Differential Equations]
The energy associated with the operator in \eqref{eqn:Main} is
*Stanford, August 5-18: [http://math.stanford.edu/~ryzhik/SCHOOL-13/summer-school-13.html Recent Advances in PDEs and Fluids]
\begin{equation}
*Berlin, November 7-9: [http://www.math.tu-berlin.de/?recent2013 Recent Trends in Differential Equations: Analysis and Discretisation Methods]
\label{eqn:Energy}
 
\int y^{1-2s} |\nabla U|^2 dx dy
==2016==
\end{equation}
* Będlewo, June 27 - July 1, 2016. [http://bcc.impan.pl/16NOPDE/ 3rd Conference on Nonlocal Operators and Partial Differential Equations]
==References==
* Vancouver,  June 13 - June 17, 2016.[https://www.pims.math.ca/scientific-event/160613-pwnvpp PIMS Workshop on Nonlocal Variational Problems and PDEs]
*{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=An extension problem related to the fractional Laplacian | url=http://dx.doi.org.ezproxy.lib.utexas.edu/10.1080/03605300600987306 | doi=10.1080/03605300600987306 | year=2007 | journal=Communications in Partial Differential Equations | issn=0360-5302 | volume=32 | issue=7 | pages=1245–1260}}

Revision as of 22:11, 23 May 2011

The fractional Laplace operator $(-\Delta)^s$ on $\mathbb{R}^n$ is the Dirichlet-to-Neumann operator of a degenerate elliptic equation on the upper half-space $\mathbb{R}^{n+1}_+$.

Let $$U:\mathbb{R}^n \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$ be a function satisfying \begin{equation} \label{eqn:Main} \nabla \cdot (y^{1-2s} \nabla U(x,y)) = 0 \end{equation} on the upper half-space, lying inside the appropriately weighted Sobolev space $\dot{H}(1-2s,\mathbb{R}^{n+1}_+)$. Then if we let $u(x) = U(x,0)$, we have \begin{equation} \label{eqn:Neumann} (-\Delta)^s u(x) = -C_{n,s} \lim_{y\rightarrow 0} y^{1-2s} \partial_y U(x,y). \end{equation} The energy associated with the operator in \eqref{eqn:Main} is \begin{equation} \label{eqn:Energy} \int y^{1-2s} |\nabla U|^2 dx dy \end{equation}

References