Extension technique: Difference between revisions

From nonlocal pde
Jump to navigation Jump to search
imported>RayAYang
(create)
(No difference)

Revision as of 22:11, 23 May 2011

The fractional Laplace operator $(-\Delta)^s$ on $\mathbb{R}^n$ is the Dirichlet-to-Neumann operator of a degenerate elliptic equation on the upper half-space $\mathbb{R}^{n+1}_+$.

Let $$U:\mathbb{R}^n \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$ be a function satisfying \begin{equation} \label{eqn:Main} \nabla \cdot (y^{1-2s} \nabla U(x,y)) = 0 \end{equation} on the upper half-space, lying inside the appropriately weighted Sobolev space $\dot{H}(1-2s,\mathbb{R}^{n+1}_+)$. Then if we let $u(x) = U(x,0)$, we have \begin{equation} \label{eqn:Neumann} (-\Delta)^s u(x) = -C_{n,s} \lim_{y\rightarrow 0} y^{1-2s} \partial_y U(x,y). \end{equation} The energy associated with the operator in \eqref{eqn:Main} is \begin{equation} \label{eqn:Energy} \int y^{1-2s} |\nabla U|^2 dx dy \end{equation}

References