Category:Quasilinear equations and List of equations: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Luis
(Created page with "This is a list of nonlocal equations that appear in this wiki. == Linear equations == === Stationary linear equations from Levy processes === \[ Lu = 0 \] where $L$ is a [[linea...")
 
Line 1: Line 1:
A quasilinear equation is one that is linear in all but the terms involving the highest order derivatives (whether they are of fractional order or not). For instance, the following equations are quasilinear
This is a list of nonlocal equations that appear in this wiki.


\[ \mbox{div} \left ( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right ) = 0, u_t = \mbox{div} \left ( u^p \nabla u\right ), (-\Delta)^{s}+H(x,u,\nabla u)=0 (s>1/2) \]
== Linear equations ==
=== Stationary linear equations from Levy processes ===
\[ Lu = 0 \]
where $L$ is a [[linear integro-differential operator]].
 
=== parabolic linear equations from Levy processes ===
\[ u_t = Lu \]
where $L$ is a [[linear integro-differential operator]].
 
=== [[Drift-diffusion equations]] ===
\[ u_t  + b \cdot \nabla u + (-\Delta)^s u = 0,\]
where $b$ is a given vector field.
 
== [[Semilinear equations]] ==
=== Stationary equations with zeroth order nonlinearity ===
\[ (-\Delta)^s u = f(u). \]
=== Reaction diffusion equations ===
\[ u_t + (-\Delta)^s u = f(u). \]
=== Burgers equation with fractional diffusion ===
\[ u_t + u \ u_x + (-\Delta)^s u = 0 \]
=== [[Surface quasi-geostrophic equation]] ===
\[ \theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0 \]
=== Conservation laws with fractional diffusion ===
\[ u_t + \mathrm{div } F(u) + (-\Delta)^s u = 0.\]
=== Hamilton-Jacobi equation with fractional diffusion ===
\[ u_t + H(\nabla u) + (-\Delta)^s u = 0.\]
=== [[Keller-Segel equation]] ===
\[u_t + \mathrm{div} \left( u \, \nabla (-\Delta)^{-1} u \right) - \Delta u = 0.\]
 
== Quasilinear or [[fully nonlinear integro-differential equations]] ==
=== [[Bellman equation]] ===
\[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \]
where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.
=== [[Isaacs equation]] ===
\[ \sup_{a \in \mathcal{A}} \ \inf_{b \in \mathcal{B}} \ L_{ab} u(x) = f(x), \]
where $L_{ab}$ is some family of linear integro-differential operators with two indices $a \in \mathcal A$ and $b \in \mathcal B$.
=== [[obstacle problem]] ===
For an elliptic operator $L$ and a function $\varphi$ (the obstacle), $u$ satisfies
\begin{align}
u &\geq \varphi \qquad \text{everywhere in the domain } D,\\
Lu &\leq 0 \qquad \text{everywhere in the domain } D,\\
Lu &= 0 \qquad \text{wherever } u > \varphi.
\end{align}
 
=== [[Nonlocal minimal surfaces ]] ===
The set $E$ satisfies.
\[ \int_{\mathbb{R}^n} \frac{\chi_E(y)-\chi_{E^c}(y)}{|x-y|^{n+s}}dy=0 \;\;\forall\; x \in \partial E.\]
=== [[Nonlocal porous medium equation]] ===
\[ u_t = \mathrm{div} \left ( u \nabla (-\Delta)^{-s} u \right).\]
Or
\[ u_t +(-\Delta)^{s}(u^m) = 0. \]
 
== Inviscid equations ==
=== [[Surface quasi-geostrophic equation|Inviscid SQG]]===
\[ \theta_t + u \cdot \nabla \theta = 0,\]
where $u = \nabla^\perp (-\Delta)^{-1/2} \theta$.
 
=== [[Active scalar equation]] (from fluid mechanics) ===
\[ \theta_t + u \cdot \nabla \theta = 0,\]
where $u = \nabla^\perp K \ast \theta$.
 
=== [[Aggregation equation]] ===
 
\[ \theta_t + \mathrm{div}(\theta \ u) = 0,\]
where $u = \nabla K \ast \theta$.

Revision as of 19:20, 4 March 2012

This is a list of nonlocal equations that appear in this wiki.

Linear equations

Stationary linear equations from Levy processes

\[ Lu = 0 \] where $L$ is a linear integro-differential operator.

parabolic linear equations from Levy processes

\[ u_t = Lu \] where $L$ is a linear integro-differential operator.

Drift-diffusion equations

\[ u_t + b \cdot \nabla u + (-\Delta)^s u = 0,\] where $b$ is a given vector field.

Semilinear equations

Stationary equations with zeroth order nonlinearity

\[ (-\Delta)^s u = f(u). \]

Reaction diffusion equations

\[ u_t + (-\Delta)^s u = f(u). \]

Burgers equation with fractional diffusion

\[ u_t + u \ u_x + (-\Delta)^s u = 0 \]

Surface quasi-geostrophic equation

\[ \theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0 \]

Conservation laws with fractional diffusion

\[ u_t + \mathrm{div } F(u) + (-\Delta)^s u = 0.\]

Hamilton-Jacobi equation with fractional diffusion

\[ u_t + H(\nabla u) + (-\Delta)^s u = 0.\]

Keller-Segel equation

\[u_t + \mathrm{div} \left( u \, \nabla (-\Delta)^{-1} u \right) - \Delta u = 0.\]

Quasilinear or fully nonlinear integro-differential equations

Bellman equation

\[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.

Isaacs equation

\[ \sup_{a \in \mathcal{A}} \ \inf_{b \in \mathcal{B}} \ L_{ab} u(x) = f(x), \] where $L_{ab}$ is some family of linear integro-differential operators with two indices $a \in \mathcal A$ and $b \in \mathcal B$.

obstacle problem

For an elliptic operator $L$ and a function $\varphi$ (the obstacle), $u$ satisfies \begin{align} u &\geq \varphi \qquad \text{everywhere in the domain } D,\\ Lu &\leq 0 \qquad \text{everywhere in the domain } D,\\ Lu &= 0 \qquad \text{wherever } u > \varphi. \end{align}

Nonlocal minimal surfaces

The set $E$ satisfies. \[ \int_{\mathbb{R}^n} \frac{\chi_E(y)-\chi_{E^c}(y)}{|x-y|^{n+s}}dy=0 \;\;\forall\; x \in \partial E.\]

Nonlocal porous medium equation

\[ u_t = \mathrm{div} \left ( u \nabla (-\Delta)^{-s} u \right).\] Or \[ u_t +(-\Delta)^{s}(u^m) = 0. \]

Inviscid equations

Inviscid SQG

\[ \theta_t + u \cdot \nabla \theta = 0,\] where $u = \nabla^\perp (-\Delta)^{-1/2} \theta$.

Active scalar equation (from fluid mechanics)

\[ \theta_t + u \cdot \nabla \theta = 0,\] where $u = \nabla^\perp K \ast \theta$.

Aggregation equation

\[ \theta_t + \mathrm{div}(\theta \ u) = 0,\] where $u = \nabla K \ast \theta$.

Pages in category "Quasilinear equations"

The following 2 pages are in this category, out of 2 total.