Open problems and Operator monotone function: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Mateusz
(Created page with "A function $f : [0, \infty) \to [0, \infty)$ is said to be an operator monotone function (complete Bernstein function, Nevanlinna-Pick function for the half-line) if $A \ge B \ge...")
 
Line 1: Line 1:
== Well posedness of the supercritical [[surface quasi-geostrophic equation]] ==
A function $f : [0, \infty) \to [0, \infty)$ is said to be an operator monotone function (complete Bernstein function, Nevanlinna-Pick function for the half-line) if $A \ge B \ge 0$ implies $f(A) \ge f(B) \ge 0$ for any self-adjoint matrices $A$, $B$. Many equivalent definitions can be given.<ref name="SSV"/>
Let $\theta_0 : \R^2 \to \R$ be a smooth function either with compact support or periodic. Let $s \in (0,1/2)$. Is there a global classical solution $\theta :\R^2 \to \R$ for the SQG equation?
\begin{align*}
\theta(x,0) &= \theta_0(x) \\
\theta_t + u \cdot \nabla \theta &= 0 \qquad \text{in } \R^2 \times (0,+\infty)
\end{align*}
where $u = R^\perp \theta$ and $R$ stands for the Riesz transform.
 
This is a very difficult open problem. It is believed that a solution would be a major step towards the understanding of Navier-Stokes equation. In the supercritical regime $s\in (0,1/2)$, the effect if the drift term is larger than the diffusion in small scales. Therefore, it seems unlikely that a proof of well posedness could be achieved with the methods currently known and listed in this wiki.
 
Note that if the relation between $u$ and $\theta$ was changed by $u = R\theta$, then the equation is ill posed. This suggests that the divergence free nature of $u$ must play an important role, unlike the critical and subcritical cases $s \geq 1/2$.
 
== Regularity of [[nonlocal minimal surfaces]] ==
 
A nonlocal minimal surface that is sufficiently flat is known to be smooth <ref name="CRS"/>. The possibility of singularities in the general case reduces to the analysis of a possible existence of nonlocal minimal cones. The problem can be stated as follows.
 
For any $s \in (0,1)$, and any natural number $n$, is there any set $A \in \R^n$, other than a half space, such that
# $A$ is a cone: $\lambda A = A$ for any $\lambda > 0$.
# If $B$ is any set in $\R^n$ which coincides with $A$ outside of a compact set $C$, then the following inequality holds
\[ \int_C \int_{C} \frac{|\chi_A(x) - \chi_A(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y + 2 \int_C \int_{\R^n \setminus C} \frac{|\chi_A(x) - \chi_A(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y \leq \int_C \int_{C} \frac{|\chi_B(x) - \chi_B(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y + 2\int_C \int_{\R^n \setminus C} \frac{|\chi_B(x) - \chi_B(y)|}{|x-y|^{n+s}} \mathrm d x \mathrm d y. \]
 
When $s$ is sufficiently close to one, such set does not exist if $n < 8$.
 
== An integral ABP estimate ==


The nonlocal version of the [[Alexadroff-Bakelman-Pucci estimate]] holds either for a right hand side in $L^\infty$ <ref name="CS"/> (in which the integral right hand side is approximated by a discrete sum) or under very restrictive assumptions on the kernels <ref name="GS"/>. Would the following result be true?
==Representation==
A function $f$ is operator monotone if and only if
\[ f(z) = a z + b + \int_{(0, \infty)} \frac{z}{z + r} \, \frac{\rho(\mathrm d r)}{r} \]
for some $a, b \ge 0$ and a Radon measure $\rho$ such that $\int_{(0, \infty)} \min(r^{-1}, r^{-2}) \rho(\mathrm d r) < \infty$.


Assume $u_n \leq 0$ outside $B_1$ and for all $x \in B_1$,
==Relation to Bernstein functions==
\[ \int_{\R^n} (u(x+y)-u(x)) K(x,y) \mathrm d y \geq \chi_{A_n}(x). \]
Operator monotone functions form a subclass of [[Bernstein function]]s. Namely, a Bernstein function $f$ is an operator monotone function if and only if the measure $\mu$ in the Bernstein representation of $f$:
Where $\chi_{A_n}$ stands for the characteristic function of the sets $A_n$. Assume that the kernels $K$ satisfy symmetry and a uniform ellipticity condition
\[ f(z) = a z + b + \int_{(0, \infty)} (1 - e^{-t z}) \mu(\mathrm d t) \]
\begin{align*}
has a completely monotone density function. In this case
K(x,y) &= K(x,-y) \\
\[ \mu(\mathrm d t) = \left( \int_{(0, \infty)} e^{-t r} \rho(\mathrm d r) \right) \mathrm d t \]
\lambda |y|^{-n-s} \leq K(x,y) &\leq \Lambda |y|^{-n-s} \qquad \text{for some } 0<\lambda<\Lambda \text{ and } s \in (0,2).
This explains the name complete Bernstein functions.
\end{align*}
If $|A_n|\to 0$ as $n \to +\infty$, is it true that $\sup u_n^+ \to 0$ as well?


This type of estimate is currently known only under strong structural hypothesis on the kernels $K$.<ref name="GS"/>
==Holomorphic extension==
 
Every operator monotone function $f$ extends to a holomorphic function on $\C \setminus (-\infty, 0]$ such that
== A [[comparison principle]] for $x$-dependent nonlocal equations which are '''not''' in the Levy-Ito form ==
Consider two continuous functions $u$ and $v$ such that
\begin{align*}
\begin{align*}
u(x) &\leq v(x) \qquad \text{for all $x$ outside some set } \Omega,\\
\Im f(z) & \ge 0 \qquad && \text{if } \Im z \ge 0 , \\
F(x,\{I_\alpha u(x)\}) &\geq F(x,\{I_\alpha v(x)\})\qquad \text{for all $x \in \Omega$}.
f(z) & \ge 0 \qquad && \text{if } \Im z = 0 , \\
\Im f(z) & \le 0 \qquad && \text{if } \Im z \le 0 .
\end{align*}
\end{align*}
Is it true that $u \leq v$ in $\Omega$ as well?
Conversely, any function $f$ with above properties is an operator monotone function.
 
It is natural to expect this result to hold if $F$ is continuous respect to $x$ and the [[linear integro-differential operators]] $I_\alpha$ satisfy some nondegeneracy condition and continuity respect to $x$, e.g.
\begin{align*}
I[u] = \int (u(x+z) - u(x) - Du(x)\cdot z 1_{B}(z))\mu_x(dz)
\end{align*}
where $(\mu_x)_x$ is a family of L\'evy measures, H\"older continous with respect to $x$?
Currently the comparison principle is only known if the kernels are continuous when written in the Levy-Ito form.<ref name="BI"/>
 
== A local [[differentiability estimates|$C^{1,\alpha}$ estimate]] for integro-differential equations with nonsmooth kernels ==
 
Assume that $u : \R^n \to \R$ is a bounded function satisfying a [[fully nonlinear integro-differential equation]] $Iu=0$ in $B_1$. Assume that $I$ is elliptic with respect to the family of kernels $K$ such that
\[ \frac{\lambda(2-s)}{|y|^{n+s}} \leq K(y) \leq \frac{\Lambda(2-s)}{|y|^{n+s}}. \]
Is it true that $u \in C^{1,\alpha}(B_1)$?
 
An extra symmetry assumptions on the kernels may or maynot be necessary. The difficulty here is the lack of any smoothness assumption on the tails of the kernels $K$. This assumption is used in a localization argument in the proof of the [[differentiability estimates|$C^{1,\alpha}$ estimates]] <ref name="CS"/>. It is conceivable that the assumption may not be necessary at least for $s>1$.
 
The need of the smoothness assumption for the $C^{1,\alpha}$ estimate is a subtle technical requirement. It is easy to overlook going through the proof naively.


Note that the assumption is used only to localize an iteration of the [[Holder estimates]]. An equation of the form $Iu = f$ in the whole space $\R^n$ with $f$ smooth enough would easily have $C^{1,\alpha}$ estimates without any smoothness restriction of the tails of the kernel.
Functions with nonnegative imaginary part in the upper half-plane are often called Nevanlinna-Pick functions, or Pick functions.
 
It is not clear how important or difficult this problem is. The solution may end up being a relatively simple technical approximation technique or may require a fundamentally new idea.
 
The same difficulty arises for $C^{s+\alpha}$ [[nonlocal Evans-Krylov theorem|estimates for convex equations]]. For example, is it true that a bounded function $u$ such that $M^+u = 0$ in $B_1$, where $M^+$ is the [[extremal operators|monster Pucci operator]] is $C^{s+\alpha}$ for some $\alpha>0$?
 
== Optimal regularity for the [[obstacle problem]] for a general integro-differential operator ==
 
Let $u$ be the solution to the [[obstacle problem for the fractional laplacian]],
\begin{align*}
u &\geq \varphi \qquad \text{in } \R^n, \\
(-\Delta)^{s/2} u &\geq 0 \qquad \text{in } \R^n, \\
(-\Delta)^{s/2} u &= 0 \qquad \text{in } \{u>\varphi\}, \\
\end{align*}
where $\varphi$ is a smooth compactly supported function. It is known that $u \in C^{1,s/2}$ (where $s$ coincides with the order of the fractional Laplacian). This regularity is optimal in the sense that one can construct solutions that are not in $C^{1,s/2+\varepsilon}$ for any $\varepsilon>0$. One can consider the same problem replacing the fractional Laplacian by any other nonlocal operator. In fact, this problem corresponds to the [[optimal stopping problem]] in stochastic control, with applications to mathematical finance. The fractional Laplacian is just the particular case when the [[Levy  process]] involved is $\alpha$-stable. The optimal regularity for the general problem is currently an open problem. Even in the linear case with constant coefficients this is nontrivial. If $u$ is a solution of
\begin{align*}
u &\geq \varphi \qquad \text{in } \R^n, \\
L u &\leq 0 \qquad \text{in } \R^n, \\
L u &= 0 \qquad \text{in } \{u>\varphi\}, \\
\end{align*}
where $L$ is a [[linear integro-differential operator]], then what is the optimal regularity we can obtain for $u$?


The optimal regularity would naturally depend on some assumptions on the linear operator $L$. If $L$ is a purely integro-differential with a kernel $K$ satisfying the usual ellipticity conditions
==Operator monotone functions of the Laplacian==
Operator monotone functions of the Laplacian are particularly regular examples of translation invariant non-local operators in $\R^n$. More precisely, $A = f(-\Delta)$ for an operator monotone $f$ if and only if
\[ -A u(x) = a \Delta u(x) + b u(x) + \int_{\R^n} (u(x + y) - u(x) - z \cdot \nabla u(x) \mathbf{1}_{|z| < 1}) k(z) \mathrm d z \]
for some $a, b \ge 0$ and $k(z)$ of the form
\begin{align*}
\begin{align*}
K(y) &= K(-y) \\
k(z) &= \int_0^\infty \int_0^\infty (4 \pi t)^{-n/2} e^{-|z|^2 / (4 t)} e^{-t r} \mathrm d t \rho(\mathrm d r)
\frac{\lambda(2-s)}{ |y|^{n+s}} \leq K(y) &\leq \frac{\Lambda(2-s)}{ |y|^{n+s}} \qquad \text{for some } 0<\lambda<\Lambda \text{ and } s \in (0,2),
\end{align*}
\end{align*}
it is natural to expect the solution $u$ to be $C^s$, but this regularity is not optimal. Is the optimal regularity going to be $C^{1,s/2}$ as in the fractional Laplacian case? Most probably some extra assumption on the kernel will be needed.
A solution to this problem would be very interesting if it provides an optimal regularity result for a natural family of kernels. If the assumption is something hard to check (like for example that there exists an extension problem whose Dirichlet to Neumann map is $L$), then the result may not be that interesting.


== Holder estimates for drift-diffusion equations (sharp assumptions for $b$ in the case $s>1/2$) ==
==References==
 
Consider a [[drift-diffusion equation]] of the form
\[ u_t + b \cdot \nabla u + (-\Delta)^s u = 0.\]
 
The solution $u$ is known to become Holder continuous under a variety of assumptions on the vector field $b$. If we assume that $\mathrm{div}\, b = 0$, we may expect that the required assumptions are slightly more flexible. Indeed, if $s=1/2$, the solution $u$ becomes Holder for positive time if $b \in L^\infty(BMO)$ <ref name="CV"/>. On the other hand, if $s=1$, the solution $u$ becomes Holder continuous for positive time if $b \in L^\infty(BMO^{-1})$ (if $b$ is the sum of derivatives of $BMO$ functions) <ref name="FV"/> <ref name="SSSZ"/>. A natural conjecture would be that the same result applies for $s \in (1/2,1)$ if $b \in L^\infty(BMO^{2s-1})$ (meaning that $(-\Delta)^{1-2s} b \in L^\infty(BMO)$).
 
The case $s < 1/2$ is completely understood and the assumption $\mathrm{div}\, b =0$ is not even necessary. For $s \in (1/2,1)$, only some perturbative results seem to be known under stronger assumptions. It is conceivable that the approach of Caffarelli and Vasseur <ref name="CV"/> can be worked out assuming that $b \in L^\infty(L^p)$ for a critical power $p$.
 
== Complete classification of free boundary points in the [[fractional obstacle problem]] ==
 
Some free boundary points of the [[fractional obstacle problem]] are classified as regular and the free boundary is known to be smooth around them <ref name="CSS"/>. Other points on the free boundary are classified as singular, and they are shown to be contained in a lower dimensional differentiable surface, and therefore to be rare <ref name="GP"/>. However, there may be other points on the free boundary that do not fall under those two categories. Two questions need to be answered.\
# Can there be any point on the free boundary that is neither regular nor singular? It is easy to produce examples in the [[thin obstacle problem]], using the [[extension technique]]. However, it is not clear if such examples can be made in the original formulation of the [[fractional obstacle problem]] since because of the decay at infinity requirement.
# In case that point of a third category exist, is the free boundary smooth around these points in the ''third category''?
 
Other open problems concerning the [[fractional obstacle problem]] are
# Further regularity of the free boundary in smoother classes than $C^{1,\alpha}$.
# Regularity of the free boundary for the parabolic problem.
 
== References ==
{{reflist|refs=
{{reflist|refs=
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity theory for fully nonlinear integro-differential equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 | year=2009 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
<ref name="SSV">{{Citation | last1=Schilling | first1=R. | last2=Song | first2=R. | last3=Vondraček | first3=Z. | title=Bernstein functions. Theory and Applications | year=2010 | publisher=de Gruyter, Berlin | series=Studies in Mathematics | volume=37 | url=http://dx.doi.org/10.1515/9783110215311 | doi=10.1515/9783110215311}}</ref>
<ref name="S2">{{Citation | last1=Silvestre | first1=Luis | title=Holder estimates for advection fractional-diffusion equations | year=To appear | journal=Annali della Scuola Normale Superiore di Pisa. Classe di Scienze}}</ref>
<ref name="K">{{Citation | last1=Kassmann | first1=Moritz | title=A priori estimates for integro-differential operators with measurable kernels | url=http://dx.doi.org/10.1007/s00526-008-0173-6 | doi=10.1007/s00526-008-0173-6 | year=2009 | journal=Calculus of Variations and Partial Differential Equations | issn=0944-2669 | volume=34 | issue=1 | pages=1–21}}</ref>
<ref name="CV">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Vasseur | first2=Alexis | title=Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation | url=http://dx.doi.org/10.4007/annals.2010.171.1903 | doi=10.4007/annals.2010.171.1903 | year=2010 | journal=[[Annals of Mathematics|Annals of Mathematics. Second Series]] | issn=0003-486X | volume=171 | issue=3 | pages=1903–1930}}</ref>
<ref name="SSSZ">{{Citation | last1=Seregin | first1=G. | last2=Silvestre | first2=Luis | last3=Sverak | first3=V. | last4=Zlatos | first4=A. | title=On divergence-free drifts | year=2010 | journal=Arxiv preprint arXiv:1010.6025}}</ref>
<ref name="FV">{{Citation | last1=Friedlander | first1=S. | last2=Vicol | first2=V. | title=Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics | year=2011 | journal=Annales de l'Institut Henri Poincare (C) Non Linear Analysis}}</ref>
<ref name="CRS">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Roquejoffre | first2=Jean Michel |last3= Savin | first3= Ovidiu | title= Nonlocal Minimal Surfaces | url=http://onlinelibrary.wiley.com/doi/10.1002/cpa.20331/abstract | doi=10.1002/cpa.20331 | year=2010 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0003-486X | volume=63 | issue=9 | pages=1111–1144}}</ref>
<ref name="GS">{{Citation | last1=Guillen | first1=N. | last2=Schwab | first2=R. | title=Aleksandrov-Bakelman-Pucci Type Estimates For Integro-Differential Equations | year=2010 | journal=Arxiv preprint arXiv:1101.0279}}</ref>
<ref name="CSS">{{Citation | last1=Caffarelli | first1=Luis A. | last2=Salsa | first2=Sandro | last3=Silvestre | first3=Luis | title=Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian | url=http://dx.doi.org/10.1007/s00222-007-0086-6 | doi=10.1007/s00222-007-0086-6 | year=2008 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=171 | issue=2 | pages=425–461}}</ref>
<ref name="GP">{{Citation | last1=Petrosyan | first1=A. | last2=Garofalo | first2=N. | title=Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=2009 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=177 | issue=2 | pages=415–461}}</ref>
<ref name="GS">{{Citation | last1=Guillen | first1=N. | last2=Schwab | first2=R. | title=Aleksandrov-bakelman-pucci type estimates for integro-differential equations | year=2010 | journal=Arxiv preprint arXiv:1101.0279}}</ref>
<ref name="BI">{{Citation | last1=Barles | first1=Guy | last2=Imbert | first2=Cyril | title=Second-order elliptic integro-differential equations: viscosity solutions' theory revisited | url=http://dx.doi.org/10.1016/j.anihpc.2007.02.007 | doi=10.1016/j.anihpc.2007.02.007 | year=2008 | journal=Annales de l'Institut Henri Poincaré. Analyse Non Linéaire | issn=0294-1449 | volume=25 | issue=3 | pages=567–585}}</ref>
}}
}}
{{stub}}

Revision as of 03:34, 19 July 2012

A function $f : [0, \infty) \to [0, \infty)$ is said to be an operator monotone function (complete Bernstein function, Nevanlinna-Pick function for the half-line) if $A \ge B \ge 0$ implies $f(A) \ge f(B) \ge 0$ for any self-adjoint matrices $A$, $B$. Many equivalent definitions can be given.[1]

Representation

A function $f$ is operator monotone if and only if \[ f(z) = a z + b + \int_{(0, \infty)} \frac{z}{z + r} \, \frac{\rho(\mathrm d r)}{r} \] for some $a, b \ge 0$ and a Radon measure $\rho$ such that $\int_{(0, \infty)} \min(r^{-1}, r^{-2}) \rho(\mathrm d r) < \infty$.

Relation to Bernstein functions

Operator monotone functions form a subclass of Bernstein functions. Namely, a Bernstein function $f$ is an operator monotone function if and only if the measure $\mu$ in the Bernstein representation of $f$: \[ f(z) = a z + b + \int_{(0, \infty)} (1 - e^{-t z}) \mu(\mathrm d t) \] has a completely monotone density function. In this case \[ \mu(\mathrm d t) = \left( \int_{(0, \infty)} e^{-t r} \rho(\mathrm d r) \right) \mathrm d t \] This explains the name complete Bernstein functions.

Holomorphic extension

Every operator monotone function $f$ extends to a holomorphic function on $\C \setminus (-\infty, 0]$ such that \begin{align*} \Im f(z) & \ge 0 \qquad && \text{if } \Im z \ge 0 , \\ f(z) & \ge 0 \qquad && \text{if } \Im z = 0 , \\ \Im f(z) & \le 0 \qquad && \text{if } \Im z \le 0 . \end{align*} Conversely, any function $f$ with above properties is an operator monotone function.

Functions with nonnegative imaginary part in the upper half-plane are often called Nevanlinna-Pick functions, or Pick functions.

Operator monotone functions of the Laplacian

Operator monotone functions of the Laplacian are particularly regular examples of translation invariant non-local operators in $\R^n$. More precisely, $A = f(-\Delta)$ for an operator monotone $f$ if and only if \[ -A u(x) = a \Delta u(x) + b u(x) + \int_{\R^n} (u(x + y) - u(x) - z \cdot \nabla u(x) \mathbf{1}_{|z| < 1}) k(z) \mathrm d z \] for some $a, b \ge 0$ and $k(z)$ of the form \begin{align*} k(z) &= \int_0^\infty \int_0^\infty (4 \pi t)^{-n/2} e^{-|z|^2 / (4 t)} e^{-t r} \mathrm d t \rho(\mathrm d r) \end{align*}

References

  1. Schilling, R.; Song, R.; Vondraček, Z. (2010), Bernstein functions. Theory and Applications, Studies in Mathematics, 37, de Gruyter, Berlin, doi:10.1515/9783110215311, http://dx.doi.org/10.1515/9783110215311 

This article is a stub. You can help this nonlocal wiki by expanding it.