Time Regularity for Nonlocal Parabolic Equations

From nonlocal pde
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This article is a stub. You can help this nonlocal wiki by expanding it.

One of the phenomena that are exclusive to nonlocal parabolic equations is how the boundary data, posed in the complement of a given domain might drastically affect the regularity of the solution. Consider the fractional heat equation of order $\sigma\in(0,2)$ \begin{alignat*}{3} u_t &= \Delta^{\sigma/2} u \quad &&\text{ in } \quad &&B_1\times\mathbb R\\ u &= g \quad &&\text{ on } \quad &&(\mathbb R^n \setminus B_1)\times\mathbb R \end{alignat*} If $g$ has a sudden discontinuity in time then it is expected that the nonlocal effect, transmitted into the equation by $\Delta^\sigma$, makes $u_t$ discontinuous in time. A specific example was presented by Chang-Lara and Dávila[1].

For fully nonlinear, nonlocal parabolic equations it was established by Chang-Lara and Kriventsov[2] that $u_t$ is Holder continuous provided that the boundary is Holder continuous in time. Under the assumption that $g$ is merely bounded, it was also proved that $u$ is Holder continuous in time for every exponent $\beta \in(0,1)$ with an estimate that degenerates as $\beta$ approaches 1. It remains open whether Lipschitz regularity in time also holds under the previous hypothesis.

One application of the result in [2] was to extend the Evans-Krylov estimate for parabolic equations under a mild continuity hypothesis for the boundary data.


References

  1. Chang-Lara, Héctor; Dávila, Gonzalo (2014), "Regularity for solutions of non local parabolic equations", Calc. Var. Partial Differential Equations 49: 139--172, doi:10.1007/s00526-012-0576-2, ISSN 0944-2669, http://dx.doi.org/10.1007/s00526-012-0576-2 
  2. 2.0 2.1 Chang-Lara, Héctor; Kriventsov, Dennis (2015), "Further Time Regularity for Non-Local, Fully Non-Linear Parabolic Equations", ArXiv e-prints