Harnack inequality and Conformally invariant operators: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>Tianling
No edit summary
 
Line 1: Line 1:
$$
On a general compact Riemannian manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by
\newcommand{\dd}{\mathrm{d}}
\[
\newcommand{\R}{\mathbb{R}}
A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M),
$$
\]
where $a, b$ are constant.


The Harnack inequality refers to a control of the maximum of a nonnegative solution of an equation by its minimum. Unlike the local case (either [[De Giorgi-Nash-Moser theorem]] or [[Krylov-Safonov theorem]]), for nonlocal equations one needs to assume that the function is nonnegative in the full space.
Examples of conformally invariant operators include:


The Harnack inequality is tightly related to [[Holder estimates]] for solutions to elliptic/parabolic equations. For a large class of problems both statements are equivalent. But there are simple cases (stable processes with the spectral measure consisting of atoms) where the Harnack inequality fails but [[Hölder estimates]] still hold true.
* The conformal Laplacian:
\[
L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g,
\]  
where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.


The result can hold either in the parabolic or elliptic setting. The parabolic Harnack inequality trivially implies the elliptic one. The reverse implication is not automatic, and the proof in the parabolic case may have some extra difficulties compared to the elliptic case.
* The Paneitz operator <ref name="paneitz1983quartic"/> <ref name="paneitz2008quartic"/>:
\[
P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q,
\]
where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor,
\[
Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR
\]
and
\[
a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}.
\]
This is a fourth order operator with leading term $(-\Delta_g)^2$.


== Elliptic case ==
* GJMS operators <ref name="GJMS"/>: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ if $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in <ref name="gover2004conformally"/> for $k>\frac n2$ and $n\ge 4$ even. An explicit formula and a recursive formula each for GJMS operators and Q-curvatures have been found by Juhl <ref name="Juhl1"/><ref name="Juhl2"/> (see also Fefferman-Graham<ref name="FG13"/> ). The formula are more explicit when they are on the standard spheres.


In the elliptic setting, the Harnack inequality refers to the following type of result: if a function $u: \R^n \to \R$ satisfies an elliptic equation $ L_x u (x) = f(x)$ in the unit ball $B_1$ and is nonnegative in the full space $\R^n$, then
*Scattering operators <ref name="graham2003scattering"/>, or the conformally invariant fractional powers of the Laplacian <ref name="chang2011fractional"/>: This is a family of conformally invariant pseudo-differential operators $P_\sigma$ defined on the conformal infinity of asymptotically hyperbolic manifolds with leading term $(-\Delta_g)^\sigma$ for all real numbers $\sigma\in (0,\frac n2)$ except at most finite values. The authors <ref name="chang2011fractional"/> reconciled the way of defining $P_\sigma$ in <ref name="graham2003scattering"/> and the localization method of Caffarelli-Silvestre  <ref name="CSextension"/> for the fractional Laplacian $(-\Delta)^\sigma$ in the Euclidean space $\mathbb{R}^n$.
\[ \sup_{B_{1/2}} u \leq C \left( \inf_{B_{1/2}} u + ||f|| \right). \]


The norm $||f||$ may depend on the type of equation.


== Parabolic case ==
Special cases:


In the parabolic setting, the Harnack inequality refers to the following type of result: if a function $u: [-1,0] \times \R^n \to \R$ satisfies a parabolic equation $ u_t - L_x u (x) = f(x)$ in the unit cylinder $(-1,0) \times B_1$ and is nonnegative in the full space $[-1,0] \times \R^n$, then
* On the Euclidean space $\mathbb{R}^n$: the operators mentioned above are just the fractional Laplacians.
\[ \sup_{[-1/2,-1/4] \times B_{1/2}} u \leq \left(\inf_{[-1/4,0] \times B_{1/2}} u + ||f|| \right). \]


The norm $||f||$ may depend on the type of equation.
* On the standard sphere $(\mathbb{S}^n, g_{\mathbb{S}^n})$ (which is the conformal infinity of the standar Poincare disk): they are the following intertwining operator <ref name="branson1987group"/> of explicit formula:
\[
P_\sigma=\frac{\Gamma(B+\frac{1}{2}+\sigma)}{\Gamma(B+\frac{1}{2}-\sigma)},\quad B=\sqrt{-\Delta_{g_{\mathbb{S}^n}}+\left(\frac{n-1}{2}\right)^2},
\]
where $\Gamma$ is the Gamma function and $\Delta_{g_{\mathbb{S}^n}}$ is the Laplace-Beltrami operator on $(\mathbb{S}^n, g_{\mathbb{S}^n})$. Moreover, the operator $P_{\sigma}$
* is the pull back of $(-\Delta)^{\sigma}$ under stereographic projections,


== Concrete examples ==
* has the eigenfunctions of spherical harmonics, and


The Harnack inequality as above is known to hold in the following situations.
* is the inverse of a spherical Riesz potential.


* '''Generalizad elliptic [[Krylov-Safonov]]'''. If $L_x u(x)$ is a symmetric integro-differential operator of the form
\[ L_x u(x) = \int_{\R^n} (u(x+y)-u(x)) K(x,y) \dd y \]
with $K$ symmetric ($K(x,y)=K(x,-y)$) and uniformly elliptic of order $s$: $(2-s)\lambda |y|^{-n-s} \leq K(x,y) \leq (2-s) \Lambda |y|^{-n-s}$.


In this case the elliptic Harnack inequality is known to hold with a constant $C$ which '''does not blow up as $s\to 2$''', and $||f||$ refers to $||f||_{L^\infty(B_1)}$ <ref name="CS"/>. It is a generalization of [[Krylov-Safonov]] theorem. The corresponding parabolic Harnack inequality with a uniform constant $C$ is not known.
== References ==
{{reflist|refs=
 
<ref name="branson1987group">{{Citation | last1=Branson | first1= Thomas P | title=Group representations arising from Lorentz conformal geometry | journal=Journal of functional analysis | year=1987 | volume=74 | pages=199--291}}</ref>
 
<ref name="CSextension">{{Citation | last1=Caffarelli | first1= Luis | last2=Silvestre | first2= Luis | title=An extension problem related to the fractional Laplacian | journal=Communications in Partial Differential Equations | year=2007 | volume=32 | pages=1245--1260}}</ref>


* '''Elliptic equations with variable order (but strictly less than 2)'''. If $L_x u(x)$ is an integro-differential operator of the form
<ref name="chang2011fractional">{{Citation | last1=Chang | first1= Sun-Yung Alice | last2=González | first2= Maria del Mar | title=Fractional Laplacian in conformal geometry | journal=Advances in Mathematics | year=2011 | volume=226 | pages=1410--1432}}</ref>
\[ L_x u(x) = \int_{\R^n} (u(x+y)-u(x)- y \cdot \nabla u(x) \chi_{B_1}(y)) K(x,y) \dd y \]
with uniformly elliptic of variable order: $\lambda |y|^{-n-s_1} \leq K(x,y) \leq \Lambda |y|^{-n-s_2}$ and $0<s_1 < s_2 < 2$ and $s_2 - s_1 < 1$, then
the elliptic Harnack inequality holds if $f \equiv 0$<ref name="BK"/>. The constants in this result blow up as $s_2 \to 2$, so it does not generalize [[Krylov-Safonov]] theorem. The proof uses probability and was based on a previous result with fixed order <ref name="BL"/>.


It is conceivable that a purely analytic proof could be done using the method of the corresponding [[Holder estimate]] <ref name="S"/>, but such proof has never been done.
<ref name="FG13">{{Citation | last1=Fefferman | first1= Charles | last2=Graham | first2= C | title=Juhl’s formulae for GJMS operators and 𝑄-curvatures | journal=Journal of the American Mathematical Society|year=2013 | volume=26 | pages=1191--1207}}</ref>


* '''Gradient flows of symmetric Dirichlet forms with variable order'''. If $u_t - L_x u(x)=0$ is the gradient flow of a [[Dirichlet form]]:
<ref name="gover2004conformally">{{Citation | last1=Gover | first1= A | last2=Hirachi | first2= Kengo | title=Conformally invariant powers of the Laplacian—a complete nonexistence theorem | journal=Journal of the American Mathematical Society |year=2004 |volume=17 | pages=389--405}}</ref>
\[ \iint_{\R^n \times \R^n} (u(y)-u(x))^2 K(x,y)\, \dd x \dd y. \]
for kernels $K$ such that $K(x,y)=K(y,x)$ and $\lambda |x-y|^{-n-s_1} \leq K(x,y) \leq \Lambda |x-y|^{-n-s_2}$ for some $0<s_1<s_2<2$ and $|x-y|$ sufficiently small. Then the parabolic Harnack inequality holds if $f \equiv 0$ for some constant $C$ which a priori '''blows up as $s_2 \to 2$''' <ref name="BBCK"/>.


It is conceivable that a Harnack inequality for Dirichlet forms can be proved for an equation with fixed order, with constants that do not blow up as the order goes to two, using the ideas from the Holder estimates<ref name="K"/>.
<ref name="GJMS">{{Citation | last1=Graham | first1= C Robin | last2=Jenne | first2= Ralph | last3=Mason | first3= Lionel J | last4=Sparling | first4= George AJ | title=Conformally invariant powers of the Laplacian, I: Existence | journal=Journal of the London Mathematical Society | year=1992 | volume=2 | pages=557--565}}</ref>
 
<ref name="graham2003scattering">{{Citation | last1=Graham | first1= C Robin | last2=Zworski | first2= Maciej | title=Scattering matrix in conformal geometry | journal=Inventiones mathematicae | year=2003 | volume=152 | pages=89--118}}</ref>
 
<ref name="Juhl1">{{Citation | last1=Juhl | first1= Andreas | title=On the recursive structure of Branson’s Q-curvature | journal=arXiv preprint arXiv:1004.1784}}</ref>
 
<ref name="Juhl2">{{Citation | last1=Juhl | first1= Andreas | title=Explicit formulas for GJMS-operators and Q-curvatures | journal=Geometric and Functional Analysis | year=2013|volume=23 | pages=1278--1370}}</ref>
 
<ref name="paneitz1983quartic">{{Citation | last1=Paneitz | first1= S | title=A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds |year=1983 | journal=preprint}}</ref>
 
<ref name="paneitz2008quartic">{{Citation | last1=Paneitz | first1= S | title=A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary) | url=http://dx.doi.org/10.3842/SIGMA.2008.036 | doi:10.3842/SIGMA.2008.036 | year=2008 | journal=SIGMA Symmetry Integrability Geom. Methods Appl. | issue=4 | Paper=036}}</ref>


== References ==
{{reflist|refs=
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Hölder estimates for solutions of integro-differential equations like the fractional Laplace | url=http://dx.doi.org/10.1512/iumj.2006.55.2706 | doi=10.1512/iumj.2006.55.2706 | year=2006 | journal=Indiana University Mathematics Journal | issn=0022-2518 | volume=55 | issue=3 | pages=1155–1174}}</ref>
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity theory for fully nonlinear integro-differential equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 | year=2009 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
<ref name="BK">{{Citation | last1=Bass | first1=Richard F. | last2=Kassmann | first2=Moritz | title=Harnack inequalities for non-local operators of variable order | url=http://dx.doi.org/10.1090/S0002-9947-04-03549-4 | doi=10.1090/S0002-9947-04-03549-4 | year=2005 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=357 | issue=2 | pages=837–850}}</ref>
<ref name="BL">{{Citation | last1=Bass | first1=Richard F. | last2=Levin | first2=David A. | title=Harnack inequalities for jump processes | url=http://dx.doi.org/10.1023/A:1016378210944 | doi=10.1023/A:1016378210944 | year=2002 | journal=Potential Analysis. An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis | issn=0926-2601 | volume=17 | issue=4 | pages=375–388}}</ref>
<ref name="BBCK">{{Citation | last1=Barlow | first1=Martin T. | last2=Bass | first2=Richard F. | last3=Chen | first3=Zhen-Qing | last4=Kassmann | first4=Moritz | title=Non-local Dirichlet forms and symmetric jump processes | url=http://dx.doi.org/10.1090/S0002-9947-08-04544-3 | doi=10.1090/S0002-9947-08-04544-3 | year=2009 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=361 | issue=4 | pages=1963–1999}}</ref>
<ref name="K">{{Citation | last1=Kassmann | first1=Moritz | title=A priori estimates for integro-differential operators with measurable kernels | url=http://dx.doi.org/10.1007/s00526-008-0173-6 | doi=10.1007/s00526-008-0173-6 | year=2009 | journal=Calculus of Variations and Partial Differential Equations | issn=0944-2669 | volume=34 | issue=1 | pages=1–21}}</ref>
<ref name="lara2011regularity">{{Citation | last1=Lara | first1= Héctor Chang | last2=Dávila | first2= Gonzalo | title=Regularity for solutions of non local parabolic equations | journal=Calculus of Variations and Partial Differential Equations | year=2011 | pages=1--34}}</ref>
}}
}}

Revision as of 22:05, 23 September 2013

On a general compact Riemannian manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by \[ A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M), \] where $a, b$ are constant.

Examples of conformally invariant operators include:

  • The conformal Laplacian:

\[ L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g, \] where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.

\[ P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q, \] where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor, \[ Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR \] and \[ a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}. \] This is a fourth order operator with leading term $(-\Delta_g)^2$.

  • GJMS operators [3]: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ if $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in [4] for $k>\frac n2$ and $n\ge 4$ even. An explicit formula and a recursive formula each for GJMS operators and Q-curvatures have been found by Juhl [5][6] (see also Fefferman-Graham[7] ). The formula are more explicit when they are on the standard spheres.
  • Scattering operators [8], or the conformally invariant fractional powers of the Laplacian [9]: This is a family of conformally invariant pseudo-differential operators $P_\sigma$ defined on the conformal infinity of asymptotically hyperbolic manifolds with leading term $(-\Delta_g)^\sigma$ for all real numbers $\sigma\in (0,\frac n2)$ except at most finite values. The authors [9] reconciled the way of defining $P_\sigma$ in [8] and the localization method of Caffarelli-Silvestre [10] for the fractional Laplacian $(-\Delta)^\sigma$ in the Euclidean space $\mathbb{R}^n$.


Special cases:

  • On the Euclidean space $\mathbb{R}^n$: the operators mentioned above are just the fractional Laplacians.
  • On the standard sphere $(\mathbb{S}^n, g_{\mathbb{S}^n})$ (which is the conformal infinity of the standar Poincare disk): they are the following intertwining operator [11] of explicit formula:

\[ P_\sigma=\frac{\Gamma(B+\frac{1}{2}+\sigma)}{\Gamma(B+\frac{1}{2}-\sigma)},\quad B=\sqrt{-\Delta_{g_{\mathbb{S}^n}}+\left(\frac{n-1}{2}\right)^2}, \] where $\Gamma$ is the Gamma function and $\Delta_{g_{\mathbb{S}^n}}$ is the Laplace-Beltrami operator on $(\mathbb{S}^n, g_{\mathbb{S}^n})$. Moreover, the operator $P_{\sigma}$

  • is the pull back of $(-\Delta)^{\sigma}$ under stereographic projections,
  • has the eigenfunctions of spherical harmonics, and
  • is the inverse of a spherical Riesz potential.


References

  1. Paneitz, S (1983), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds", preprint 
  2. Paneitz, S (2008), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)", SIGMA Symmetry Integrability Geom. Methods Appl. (4), http://dx.doi.org/10.3842/SIGMA.2008.036 
  3. Graham, C Robin; Jenne, Ralph; Mason, Lionel J; Sparling, George AJ (1992), "Conformally invariant powers of the Laplacian, I: Existence", Journal of the London Mathematical Society 2: 557--565 
  4. Gover, A; Hirachi, Kengo (2004), "Conformally invariant powers of the Laplacian—a complete nonexistence theorem", Journal of the American Mathematical Society 17: 389--405 
  5. Juhl, Andreas, "On the recursive structure of Branson’s Q-curvature", arXiv preprint arXiv:1004.1784 
  6. Juhl, Andreas (2013), "Explicit formulas for GJMS-operators and Q-curvatures", Geometric and Functional Analysis 23: 1278--1370 
  7. Fefferman, Charles; Graham, C (2013), "Juhl’s formulae for GJMS operators and 𝑄-curvatures", Journal of the American Mathematical Society 26: 1191--1207 
  8. 8.0 8.1 Graham, C Robin; Zworski, Maciej (2003), "Scattering matrix in conformal geometry", Inventiones mathematicae 152: 89--118 
  9. 9.0 9.1 Chang, Sun-Yung Alice; González, Maria del Mar (2011), "Fractional Laplacian in conformal geometry", Advances in Mathematics 226: 1410--1432 
  10. Caffarelli, Luis; Silvestre, Luis (2007), "An extension problem related to the fractional Laplacian", Communications in Partial Differential Equations 32: 1245--1260 
  11. Branson, Thomas P (1987), "Group representations arising from Lorentz conformal geometry", Journal of functional analysis 74: 199--291