Levy processes and Conformally invariant operators: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Tianling
No edit summary
 
Line 1: Line 1:
A Lévy process is an important type of [[stochastic process]] (namely, a family of $\mathbb{R}^d$ valued random variables each indexed by a positive number $t\geq 0$).  In the context of parabolic integro-differential equations they play the same role that Brownian motion and more general diffusions play in the theory of second order parabolic equations.
On a general compact Riemannian manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by
\[
A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M),
\]
where $a, b$ are constant.


Informally speaking, a Lévy process is a random trajectory, generalizing the concept of Brownian motion, which may contain jump discontinuities. A prototypical example would be $X(t)=B(t)+N(t)$ where $B(t)$ is the standard [[Brownian motion]] and $N(t)$ is a [[Compound Poisson process]], the trajectory described by typical sample path of this process would look like the union of several disconnected Brownian motion paths.
Examples of conformally invariant operators include:


== Definition ==
* The conformal Laplacian:
\[
L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g,
\]
where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.


A stochastic process $X=\{X(t)\}_{t \geq 0}$ with values in $\mathbb{R}^d$ is said to be a Lévy process if
* The Paneitz operator <ref name="paneitz1983quartic"/> <ref name="paneitz2008quartic"/>:
\[
P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q,
\]
where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor,
\[
Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR
\]
and
\[
a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}.
\]
This is a fourth order operator with leading term $(-\Delta_g)^2$.


1.For any sequence $0 \leq t_1 < t_2 <...<t_n$ the random variables $X(t_0),X(t_1)-X(t_0),...,X(t_n)-X(t_{n-1})$ are independent.
* GJMS operators <ref name="GJMS"/>: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ if $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in <ref name="gover2004conformally"/> for $k>\frac n2$ and $n\ge 4$ even. An explicit formula and a recursive formula each for GJMS operators and Q-curvatures have been found by Juhl <ref name="Juhl1"/><ref name="Juhl2"/> (see also Fefferman-Graham<ref name="FG13"/> ). The formula are more explicit when they are on the standard spheres.  


2.For any positive times $s\leq t$ the random variables $X(t-s)$ and $X(t)-X(s)$ have the same probability law.
*Scattering operators <ref name="graham2003scattering"/>, or the conformally invariant fractional powers of the Laplacian <ref name="chang2011fractional"/>: This is a family of conformally invariant pseudo-differential operators $P_\sigma$ defined on the conformal infinity of asymptotically hyperbolic manifolds with leading term $(-\Delta_g)^\sigma$ for all real numbers $\sigma\in (0,\frac n2)$ except at most finite values. The authors <ref name="chang2011fractional"/> reconciled the way of defining $P_\sigma$ in <ref name="graham2003scattering"/> and the localization method of Caffarelli-Silvestre  <ref name="CSextension"/> for the fractional Laplacian $(-\Delta)^\sigma$ in the Euclidean space $\mathbb{R}^n$.


3.Almost surely, the trajectory of $X(t)$ is continuous from the right, with limit from the left also known as "càdlàg" for its acronym in french.


== Lévy-Khintchine Formula ==
Special cases:


It follows from the first two properties above that if $X$ is a Lévy process and we further assume $X(0)=0$ a.s. then for each fixed positive $t$ the random variable $X(t)$ is infinitely divisible, that is, it can be written as the sum of $n$ independent and identically distribued random variables, for all $n\in\mathbb{N}$. Indeed, let $h=\tfrac{t}{n}$, then
* On the Euclidean space $\mathbb{R}^n$: the operators mentioned above are just the fractional Laplacians.


\[X(t) = \left( X(h)-X(0)\right)+\left( X(2h)-X(h)\right)+...+\left( X(t)-X((n-1)h)\right)\]
* On the standard sphere $(\mathbb{S}^n, g_{\mathbb{S}^n})$ (which is the conformal infinity of the standar Poincare disk): they are the following intertwining operator <ref name="branson1987group"/> of explicit formula:
\[
P_\sigma=\frac{\Gamma(B+\frac{1}{2}+\sigma)}{\Gamma(B+\frac{1}{2}-\sigma)},\quad B=\sqrt{-\Delta_{g_{\mathbb{S}^n}}+\left(\frac{n-1}{2}\right)^2},
\]
where $\Gamma$ is the Gamma function and $\Delta_{g_{\mathbb{S}^n}}$ is the Laplace-Beltrami operator on $(\mathbb{S}^n, g_{\mathbb{S}^n})$. Moreover, the operator $P_{\sigma}$
* is the pull back of $(-\Delta)^{\sigma}$ under stereographic projections,


and by the above definition the differences $X(kh)-X((k-1)h)$ are independent and distributed the same as $X(h)$. From the infinite divisibility of $X(t)$ it follows by a theorem of Lévy and Khintchine that  for any $\xi \in \mathbb{R}^d$ we have
* has the eigenfunctions of spherical harmonics, and  


\[ \mathbb{E} \left [ e^{i\xi\cdot X_t}\right ] = e^{t\eta(\xi)}\]
* is the inverse of a spherical Riesz potential.


the function $\eta(\xi)$ given by


\[\eta(\xi)=i y\cdot b  -\tfrac{1}{2}(A\xi,\xi)+\int_{\mathbb{R}^d} \left ( e^{i \xi\cdot y}-1-i\xi\cdot y \chi_{B_1}(y) \right ) d\mu(y)  \]
== References ==
{{reflist|refs=


where $b$ is a vector, $A$ is a positive matrix, $B_1$ is the unit ball and $\mu$ is a Lévy measure, that is, a Borel measure in $\mathbb{R}^d$ such that
<ref name="branson1987group">{{Citation | last1=Branson | first1= Thomas P | title=Group representations arising from Lorentz conformal geometry | journal=Journal of functional analysis | year=1987 | volume=74 | pages=199--291}}</ref>


\[ \int_{\mathbb{R}^d}\frac{|y|^2}{1+|y|^2}d\mu(y) <+\infty. \]
<ref name="CSextension">{{Citation | last1=Caffarelli | first1= Luis | last2=Silvestre | first2= Luis | title=An extension problem related to the fractional Laplacian | journal=Communications in Partial Differential Equations | year=2007 | volume=32 | pages=1245--1260}}</ref>


The interpretation of this measure $\mu$ is that ''jumps'' from some point $x$ to $x+y$ with $y$ in some set $A$ occur as a Poisson process with intensity $\mu(A)$.
<ref name="chang2011fractional">{{Citation | last1=Chang | first1= Sun-Yung Alice | last2=González | first2= Maria del Mar | title=Fractional Laplacian in conformal geometry | journal=Advances in Mathematics | year=2011 | volume=226 | pages=1410--1432}}</ref>


== Connection to linear integro-differential operators ==
<ref name="FG13">{{Citation | last1=Fefferman | first1= Charles | last2=Graham | first2= C | title=Juhl’s formulae for GJMS operators and 𝑄-curvatures | journal=Journal of the American Mathematical Society|year=2013 | volume=26 | pages=1191--1207}}</ref>


Any Lévy process $X(t)$ such that $X(0)=0$ almost surely defines a linear semigroup $\{U_t\}_{t\geq0}$ on the space  of continuous functions $f:\mathbb{R}^d\to\mathbb{R}^d$ as follows
<ref name="gover2004conformally">{{Citation | last1=Gover | first1= A | last2=Hirachi | first2= Kengo | title=Conformally invariant powers of the Laplacian—a complete nonexistence theorem | journal=Journal of the American Mathematical Society |year=2004 |volume=17 | pages=389--405}}</ref>


\[(U_tf)(x)= \mathbb{E}\left [ f(x+X(t)) \right ]\]
<ref name="GJMS">{{Citation | last1=Graham | first1= C Robin | last2=Jenne | first2= Ralph | last3=Mason | first3= Lionel J | last4=Sparling | first4= George AJ | title=Conformally invariant powers of the Laplacian, I: Existence | journal=Journal of the London Mathematical Society | year=1992 | volume=2 | pages=557--565}}</ref>


Given the initial assumption on $X(0)$ it is clear that $U_0$ is the identity, and given that $X(t)-X(s)$ is distributed as $X(t-s)$ it follows that $U_t \circ U_s = U_{t+s}$.
<ref name="graham2003scattering">{{Citation | last1=Graham | first1= C Robin | last2=Zworski | first2= Maciej | title=Scattering matrix in conformal geometry | journal=Inventiones mathematicae | year=2003 | volume=152 | pages=89--118}}</ref>


As a semigroup, $U_t$ has an infinitesimal generator which turns out to be a [[Linear integro-differential operator]]. More precisely, if we let $f(x,t):=(U_tf)(x)$, then, assuming that $f(x,t)$ has enough regularity it can be checked that
<ref name="Juhl1">{{Citation | last1=Juhl | first1= Andreas | title=On the recursive structure of Branson’s Q-curvature | journal=arXiv preprint arXiv:1004.1784}}</ref>


\[\partial_t f = Lf \;\;\;\mbox{ for all } (x,t)\in\mathbb{R}^d\times \mathbb{R}_+\]
<ref name="Juhl2">{{Citation | last1=Juhl | first1= Andreas | title=Explicit formulas for GJMS-operators and Q-curvatures | journal=Geometric and Functional Analysis | year=2013|volume=23 | pages=1278--1370}}</ref>


where for any smooth function $\phi$, we have
<ref name="paneitz1983quartic">{{Citation | last1=Paneitz | first1= S | title=A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds |year=1983 | journal=preprint}}</ref>


\[ L\phi(x) = b \cdot \nabla \phi(x) +\mathrm{tr} \,( A\cdot D^2 \phi )+ \int_{\R^d} (\phi(x+y) - \phi(x) - y \cdot \nabla \phi(x) \chi_{B_1}(y)) \, \mathrm{d} \mu(y) \]
<ref name="paneitz2008quartic">{{Citation | last1=Paneitz | first1= S | title=A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary) | url=http://dx.doi.org/10.3842/SIGMA.2008.036 | doi:10.3842/SIGMA.2008.036 | year=2008 | journal=SIGMA Symmetry Integrability Geom. Methods Appl. | issue=4 | Paper=036}}</ref>


== Stochastic control and fully non-linear integro-differential operators ==
}}
 
A similar connection holds via the [[Isaacs equation|Isaacs-Bellman]] equation arising in [[stochastic control]] problems (or more generally in stochastic games). In this case the corresponding semigroup is not linear, and instead one must work in terms of viscosity solutions to build it.

Revision as of 22:05, 23 September 2013

On a general compact Riemannian manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by \[ A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M), \] where $a, b$ are constant.

Examples of conformally invariant operators include:

  • The conformal Laplacian:

\[ L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g, \] where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.

\[ P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q, \] where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor, \[ Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR \] and \[ a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}. \] This is a fourth order operator with leading term $(-\Delta_g)^2$.

  • GJMS operators [3]: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ if $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in [4] for $k>\frac n2$ and $n\ge 4$ even. An explicit formula and a recursive formula each for GJMS operators and Q-curvatures have been found by Juhl [5][6] (see also Fefferman-Graham[7] ). The formula are more explicit when they are on the standard spheres.
  • Scattering operators [8], or the conformally invariant fractional powers of the Laplacian [9]: This is a family of conformally invariant pseudo-differential operators $P_\sigma$ defined on the conformal infinity of asymptotically hyperbolic manifolds with leading term $(-\Delta_g)^\sigma$ for all real numbers $\sigma\in (0,\frac n2)$ except at most finite values. The authors [9] reconciled the way of defining $P_\sigma$ in [8] and the localization method of Caffarelli-Silvestre [10] for the fractional Laplacian $(-\Delta)^\sigma$ in the Euclidean space $\mathbb{R}^n$.


Special cases:

  • On the Euclidean space $\mathbb{R}^n$: the operators mentioned above are just the fractional Laplacians.
  • On the standard sphere $(\mathbb{S}^n, g_{\mathbb{S}^n})$ (which is the conformal infinity of the standar Poincare disk): they are the following intertwining operator [11] of explicit formula:

\[ P_\sigma=\frac{\Gamma(B+\frac{1}{2}+\sigma)}{\Gamma(B+\frac{1}{2}-\sigma)},\quad B=\sqrt{-\Delta_{g_{\mathbb{S}^n}}+\left(\frac{n-1}{2}\right)^2}, \] where $\Gamma$ is the Gamma function and $\Delta_{g_{\mathbb{S}^n}}$ is the Laplace-Beltrami operator on $(\mathbb{S}^n, g_{\mathbb{S}^n})$. Moreover, the operator $P_{\sigma}$

  • is the pull back of $(-\Delta)^{\sigma}$ under stereographic projections,
  • has the eigenfunctions of spherical harmonics, and
  • is the inverse of a spherical Riesz potential.


References

  1. Paneitz, S (1983), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds", preprint 
  2. Paneitz, S (2008), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)", SIGMA Symmetry Integrability Geom. Methods Appl. (4), http://dx.doi.org/10.3842/SIGMA.2008.036 
  3. Graham, C Robin; Jenne, Ralph; Mason, Lionel J; Sparling, George AJ (1992), "Conformally invariant powers of the Laplacian, I: Existence", Journal of the London Mathematical Society 2: 557--565 
  4. Gover, A; Hirachi, Kengo (2004), "Conformally invariant powers of the Laplacian—a complete nonexistence theorem", Journal of the American Mathematical Society 17: 389--405 
  5. Juhl, Andreas, "On the recursive structure of Branson’s Q-curvature", arXiv preprint arXiv:1004.1784 
  6. Juhl, Andreas (2013), "Explicit formulas for GJMS-operators and Q-curvatures", Geometric and Functional Analysis 23: 1278--1370 
  7. Fefferman, Charles; Graham, C (2013), "Juhl’s formulae for GJMS operators and 𝑄-curvatures", Journal of the American Mathematical Society 26: 1191--1207 
  8. 8.0 8.1 Graham, C Robin; Zworski, Maciej (2003), "Scattering matrix in conformal geometry", Inventiones mathematicae 152: 89--118 
  9. 9.0 9.1 Chang, Sun-Yung Alice; González, Maria del Mar (2011), "Fractional Laplacian in conformal geometry", Advances in Mathematics 226: 1410--1432 
  10. Caffarelli, Luis; Silvestre, Luis (2007), "An extension problem related to the fractional Laplacian", Communications in Partial Differential Equations 32: 1245--1260 
  11. Branson, Thomas P (1987), "Group representations arising from Lorentz conformal geometry", Journal of functional analysis 74: 199--291