Nonlocal minimal surfaces and Nonlocal porous medium equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Nestor
mNo edit summary
 
Line 1: Line 1:
In broad and vague terms, these surfaces arise as the boundaries of domains $E \subset \mathbb{R}^n$ that are minimizers or critical points (within a class of given admissible configurations) of the energy functional:
The nonlocal porous medium equation of order $\sigma$ is the name currently given to two very different equations, namely


\[ J_s(E)= C_{n,s}\int_{E}\int_{E^c}\frac{1}{|x-y|^{n+s}}dxdy,\;\; s \in (0,1) \]
\[ u_t = \nabla \cdot \left ( u \nabla \mathcal{K_\alpha} (u) \right )\]


It can be checked easily that this agrees (save for a factor of $2$) with  norm of the characteristic function $\chi_E$ in the homogenous Sobolev space  $\dot{H}^{\frac{s}{2}}$. The dimensional constant $C_{n,s}$ blows up as $s \to 1^-$, in which case (at least when the boundary of $E$ is smooth enough) one can check that $J_s(E)$ converges to the perimeter of $E$.
\[\mbox{ where } \mathcal{K}_\alpha(u) := C_{n,\alpha}\; u * |x|^{-n+\alpha},\;\; \alpha+2=\sigma \]


Classically,  [[minimal surfaces]] (or generally [[surfaces of constant mean curvature]] ) arise in physical situations where one has two phases interacting (eg. water-air, water-ice ) and the energy of interaction is proportional to the area of the interface, which is due to the interaction between particles/agents in both phases being negligible when they are far apart.
and


Nonlocal minimal surfaces then, describe physical phenomena where the interaction potential does not decay fast enough as particles are apart, so that two particles on different phases and far from the interface still contribute a non-trivial amount to the total interaction energy, in particular, one may consider much more general energy functionals corresponding to different interaction potentials
\[ u_t +(-\Delta)^{s}(u^m) = 0 \]


\[ J_K(E)= \int_{E}\int_{E^c}K(x,y) dxdy \]
These equations agree when $s=1$ and $m=2$, otherwise they are not only different superficially, they also exhibit extremely different behaviors. They are both fractional order [[Quasilinear equations]].


== Definition ==
The first of the two has the remarkable property (for nonlocal equations at least) that any initial data with compact support remains with compact support for all later times, the opposite is true of the second equation, for which [[instantaneous speed of propagation]] holds.


Following the most accepted convention for [[minimal surfaces]], a (classical) nonlocal minimal surface is (given $s\in (0,1)$) the boundary $\Sigma$ of an open set $E \subset \mathbb{R}^n$ such that $\Sigma$ is at least $C^{1,s+\epsilon}$ and more importantly its [[Nonlocal mean curvature]] $H_s$ is identically zero in $\Omega$ (see below), that is
This means that the first model presents us with a [[free boundary problem]]. For this model  global existence and Hölder continuity of weak solutions have been recently obtained <ref name="CV1"/>, there is almost nothing known about the properties of its free boundary, making it a rich source of open questions.


\[ H_s(x): = C_{n,s}\int_{\mathbb{R}^n} \frac{\chi_E(y)-\chi_{E^c}(y)}{|x-y|^{n+s}}dy=0 \;\;\forall\; x \in \Sigma\]
For the second equation, both the Cauchy problem and long time behavior have been extensively studied in recent years <ref name="PQRV" /ref>.


In this case we say that $\Sigma$ is a nonlocal minimal surface in $\Omega$.
== References ==
{{reflist|refs=
<ref name="CV1"> {{Citation | last1=Caffarelli | first1=Luis | last2=Vazquez | first2=Juan | title=Nonlinear Porous Medium Flow with Fractional Potential Pressure | url=http://dx.doi.org/10.1007/s00205-011-0420-4 | publisher=Springer Berlin / Heidelberg | year=2011 | journal=Archive for Rational Mechanics and Analysis | issn=0003-9527 | pages=1–29}} </ref>


<ref name="PQRV">{{Citation | last1=Pablo | first1=Arturo de | last2=Quirós | first2=Fernando | last3=Rodríguez | first3=Ana | last4=Vazquez | first4=Juan Luis | title=A fractional porous medium equation | url=http://www.sciencedirect.com/science/article/pii/S0001870810003130 | doi=DOI: 10.1016/j.aim.2010.07.017 | year=2011 | journal=Advances in Mathematics | issn=0001-8708 | volume=226 | issue=2 | pages=1378–1409}}
</ref>


Example: Suppose that $E$ and $\Omega$ are such that for any other set $F$ such that $F \Delta E \subset \subset \Omega$ (i.e. $F$ agrees with $E$ outside $\Omega$) we have
}}


\[J_s(E) \leq J_s(F) \]
[[Category:Quasilinear equations]] [[Category:Evolution equations]] [[Category:Free boundary problems]]
 
Then, if it is the case that $E$ has a smooth enough boundary, one can check that $E$ is a nonlocal minimal surface in $\Omega$.
 
<div style="background:#DDEEFF;">
<blockquote>
'''Note''' For this definition to make sense, $\Sigma$ must be the boundary of some open set $E$, in this article, we will often refer to the set $E$ itself as "the" minimal surface, and no confusion should arise from this.
</blockquote>
</div>
 
 
== Nonlocal mean curvature ==
 
== Surfaces minimizing non-local energy functionals ==
 
== The Caffarelli-Roquejoffre-Savin Regularity Theorem==

Revision as of 18:01, 3 June 2011

The nonlocal porous medium equation of order $\sigma$ is the name currently given to two very different equations, namely

\[ u_t = \nabla \cdot \left ( u \nabla \mathcal{K_\alpha} (u) \right )\]

\[\mbox{ where } \mathcal{K}_\alpha(u) := C_{n,\alpha}\; u * |x|^{-n+\alpha},\;\; \alpha+2=\sigma \]

and

\[ u_t +(-\Delta)^{s}(u^m) = 0 \]

These equations agree when $s=1$ and $m=2$, otherwise they are not only different superficially, they also exhibit extremely different behaviors. They are both fractional order Quasilinear equations.

The first of the two has the remarkable property (for nonlocal equations at least) that any initial data with compact support remains with compact support for all later times, the opposite is true of the second equation, for which instantaneous speed of propagation holds.

This means that the first model presents us with a free boundary problem. For this model global existence and Hölder continuity of weak solutions have been recently obtained [1], there is almost nothing known about the properties of its free boundary, making it a rich source of open questions.

For the second equation, both the Cauchy problem and long time behavior have been extensively studied in recent years Cite error: Invalid <ref> tag; invalid names, e.g. too many

[2]

}}

  1. Cite error: Invalid <ref> tag; no text was provided for refs named CV1
  2. Pablo, Arturo de; Quirós, Fernando; Rodríguez, Ana; Vazquez, Juan Luis (2011), "A fractional porous medium equation", Advances in Mathematics 226 (2): 1378–1409, doi:DOI: 10.1016/j.aim.2010.07.017, ISSN 0001-8708, http://www.sciencedirect.com/science/article/pii/S0001870810003130