Levy processes and Dislocation dynamics: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
 
imported>Nestor
(Created page with "Dislocations are microscopic defects in crystals that change over time (due for instance to shear stresses on the crystal). If we have a finite number of parallel (horizontal) ...")
 
Line 1: Line 1:
A Lévy process is an important type of [[stochastic process]] (namely, a family of $\mathbb{R}^d$ valued random variables each indexed by a positive number $t\geq 0$).  In the context of parabolic integro-differential equations they play the same role that Brownian motion and more general diffusions play in the theory of second order parabolic equations.
Dislocations are microscopic defects in crystals that change over time (due for instance to shear stresses on the crystal).  


Informally speaking, a Lévy process is a random trajectory, generalizing the concept of Brownian motion, which may contain jump discontinuities. A prototypical example would be $X(t)=B(t)+N(t)$ where $B(t)$ is the standard [[Brownian motion]] and $N(t)$ is a [[Compound Poisson process]], the trajectory described by typical sample path of this process would look like the union of several disconnected Brownian motion paths.
If we have a finite number of parallel (horizontal) lines on a 2D crystal each given by the equation $y=y_i$ ($y_i \in \mathbb{R}$) then a simplified model for the evolution of these lines says that the positions of these lines evolve according to the system of ODEs


== Definition ==
\[ \dot{y}_i=F-V\;'_0(y_i) - \sum \limits_{j \neq i} V\;'(y_i-y_j) \;\;\;\text{ for } i=1,...,N, \]


A stochastic process $X=\{X(t)\}_{t \geq 0}$ with values in $\mathbb{R}^d$ is said to be a Lévy process if
One can consider the case in which $N \to +\infty$ and consider the evolution of a density of dislocation lines. If $u(x,t)$ denotes the limiting density, then the  it solves the integro-differential equation


1.For any sequence $0 \leq t_1 < t_2 <...<t_n$ the random variables $X(t_0),X(t_1)-X(t_0),...,X(t_n)-X(t_{n-1})$ are independent.
\[ u_t +|u_x|\Lambda^s u = 0 \;\;\;\text{  for all } (x,t) \in \mathbb{R}\times\mathbb{R}_+  \]


2.For any positive times $s\leq t$ the random variables $X(t-s)$ and $X(t)-X(s)$ have the same probability law.
in the case where the interaction potential $V\;\;$ satisfies $V\;'(y)=-\frac{1}{y^s}$. For this one dimensional model (which enjoys a maximum principle) a complete theory in terms of viscosity solutions, including existence, uniqueness and regularity was recently developed <ref name="BMK" />.


3.Almost surely, the trajectory of $X(t)$ is continuous from the right, with limit from the left also known as "càdlàg" for its acronym in french.
== References ==
 
{{reflist|refs=
== Lévy-Khintchine Formula ==  
<ref name="BMK">{{Citation | last1=Biler | first1=Piotr | last2=Monneau | first2=Régis | last3=Karch | first3=Grzegorz | title=Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions | doi=10.1007/s00220-009-0855-8 | year=2009 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=294 | issue=1 | pages=145–168}}</ref>
 
}}
It follows from the first two properties above that if $X$ is a Lévy process and we further assume $X(0)=0$ a.s. then for each fixed positive $t$ the random variable $X(t)$ is infinitely divisible, that is, it can be written as the sum of $n$ independent and identically distribued random variables, for all $n\in\mathbb{N}$. Indeed, let $h=\tfrac{t}{n}$, then
 
\[X(t) = \left( X(h)-X(0)\right)+\left( X(2h)-X(h)\right)+...+\left( X(t)-X((n-1)h)\right)\]
 
and by the above definition the differences $X(kh)-X((k-1)h)$ are independent and distributed the same as $X(h)$. From the infinite divisibility of $X(t)$ it follows by a theorem of Lévy and Khintchine that  for any $\xi \in \mathbb{R}^d$ we have
 
\[ \mathbb{E} \left [ e^{i\xi\cdot X_t}\right ] = e^{t\eta(\xi)}\]
 
the function $\eta(\xi)$ given by
 
\[\eta(\xi)=i y\cdot b  -\tfrac{1}{2}(A\xi,\xi)+\int_{\mathbb{R}^d} \left ( e^{i \xi\cdot y}-1-i\xi\cdot y \chi_{B_1}(y) \right ) d\mu(y)  \]
 
where $b$ is a vector, $A$ is a positive matrix, $B_1$ is the unit ball and $\mu$ is a Lévy measure, that is, a Borel measure in $\mathbb{R}^d$ such that
 
\[ \int_{\mathbb{R}^d}\frac{|y|^2}{1+|y|^2}d\mu(y) <+\infty. \]
 
The interpretation of this measure $\mu$ is that ''jumps'' from some point $x$ to $x+y$ with $y$ in some set $A$ occur as a Poisson process with intensity $\mu(A)$.
 
== Connection to linear integro-differential operators ==
 
Any Lévy process $X(t)$ such that $X(0)=0$ almost surely defines a linear semigroup $\{U_t\}_{t\geq0}$ on the space  of continuous functions $f:\mathbb{R}^d\to\mathbb{R}^d$ as follows
 
\[(U_tf)(x)= \mathbb{E}\left [ f(x+X(t)) \right ]\]
 
Given the initial assumption on $X(0)$ it is clear that $U_0$ is the identity, and given that $X(t)-X(s)$ is distributed as $X(t-s)$ it follows that $U_t \circ U_s = U_{t+s}$.  
 
As a semigroup, $U_t$ has an infinitesimal generator which turns out to be a [[Linear integro-differential operator]]. More precisely, if we let $f(x,t):=(U_tf)(x)$, then, assuming that $f(x,t)$ has enough regularity it can be checked that
 
\[\partial_t f = Lf \;\;\;\mbox{ for all } (x,t)\in\mathbb{R}^d\times \mathbb{R}_+\]
 
where for any smooth function $\phi$, we have
 
\[ L\phi(x) = b \cdot \nabla \phi(x) +\mathrm{tr} \,( A\cdot D^2 \phi )+ \int_{\R^d} (\phi(x+y) - \phi(x) - y \cdot \nabla \phi(x) \chi_{B_1}(y)) \, \mathrm{d} \mu(y) \]
 
== [[Stochastic control]] and fully non-linear integro-differential operators ==
 
A similar connection holds via the [[Isaacs equation|Isaacs-Bellman]] equation arising in [[stochastic control]] problems (or more generally in stochastic games). In this case the corresponding semigroup is not linear, and instead one must work in terms of viscosity solutions to build it.

Revision as of 21:36, 23 January 2012

Dislocations are microscopic defects in crystals that change over time (due for instance to shear stresses on the crystal).

If we have a finite number of parallel (horizontal) lines on a 2D crystal each given by the equation $y=y_i$ ($y_i \in \mathbb{R}$) then a simplified model for the evolution of these lines says that the positions of these lines evolve according to the system of ODEs

\[ \dot{y}_i=F-V\;'_0(y_i) - \sum \limits_{j \neq i} V\;'(y_i-y_j) \;\;\;\text{ for } i=1,...,N, \]

One can consider the case in which $N \to +\infty$ and consider the evolution of a density of dislocation lines. If $u(x,t)$ denotes the limiting density, then the it solves the integro-differential equation

\[ u_t +|u_x|\Lambda^s u = 0 \;\;\;\text{ for all } (x,t) \in \mathbb{R}\times\mathbb{R}_+ \]

in the case where the interaction potential $V\;\;$ satisfies $V\;'(y)=-\frac{1}{y^s}$. For this one dimensional model (which enjoys a maximum principle) a complete theory in terms of viscosity solutions, including existence, uniqueness and regularity was recently developed [1].

References

  1. Biler, Piotr; Monneau, Régis; Karch, Grzegorz (2009), "Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions", Communications in Mathematical Physics 294 (1): 145–168, doi:10.1007/s00220-009-0855-8, ISSN 0010-3616