Conformally invariant operators

From nonlocal pde
Revision as of 22:05, 23 September 2013 by imported>Tianling
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

On a general compact Riemannian manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by \[ A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M), \] where $a, b$ are constant.

Examples of conformally invariant operators include:

  • The conformal Laplacian:

\[ L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g, \] where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.

\[ P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q, \] where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor, \[ Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR \] and \[ a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}. \] This is a fourth order operator with leading term $(-\Delta_g)^2$.

  • GJMS operators [3]: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ if $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in [4] for $k>\frac n2$ and $n\ge 4$ even. An explicit formula and a recursive formula each for GJMS operators and Q-curvatures have been found by Juhl [5][6] (see also Fefferman-Graham[7] ). The formula are more explicit when they are on the standard spheres.
  • Scattering operators [8], or the conformally invariant fractional powers of the Laplacian [9]: This is a family of conformally invariant pseudo-differential operators $P_\sigma$ defined on the conformal infinity of asymptotically hyperbolic manifolds with leading term $(-\Delta_g)^\sigma$ for all real numbers $\sigma\in (0,\frac n2)$ except at most finite values. The authors [9] reconciled the way of defining $P_\sigma$ in [8] and the localization method of Caffarelli-Silvestre [10] for the fractional Laplacian $(-\Delta)^\sigma$ in the Euclidean space $\mathbb{R}^n$.


Special cases:

  • On the Euclidean space $\mathbb{R}^n$: the operators mentioned above are just the fractional Laplacians.
  • On the standard sphere $(\mathbb{S}^n, g_{\mathbb{S}^n})$ (which is the conformal infinity of the standar Poincare disk): they are the following intertwining operator [11] of explicit formula:

\[ P_\sigma=\frac{\Gamma(B+\frac{1}{2}+\sigma)}{\Gamma(B+\frac{1}{2}-\sigma)},\quad B=\sqrt{-\Delta_{g_{\mathbb{S}^n}}+\left(\frac{n-1}{2}\right)^2}, \] where $\Gamma$ is the Gamma function and $\Delta_{g_{\mathbb{S}^n}}$ is the Laplace-Beltrami operator on $(\mathbb{S}^n, g_{\mathbb{S}^n})$. Moreover, the operator $P_{\sigma}$

* is the pull back of $(-\Delta)^{\sigma}$ under stereographic projections, 
* has the eigenfunctions of spherical harmonics, and 
* is the inverse of a spherical Riesz potential.


References

  1. Paneitz, S (1983), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds", preprint 
  2. Paneitz, S (2008), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)", SIGMA Symmetry Integrability Geom. Methods Appl. (4), http://dx.doi.org/10.3842/SIGMA.2008.036 
  3. Graham, C Robin; Jenne, Ralph; Mason, Lionel J; Sparling, George AJ (1992), "Conformally invariant powers of the Laplacian, I: Existence", Journal of the London Mathematical Society 2: 557--565 
  4. Gover, A; Hirachi, Kengo (2004), "Conformally invariant powers of the Laplacian—a complete nonexistence theorem", Journal of the American Mathematical Society 17: 389--405 
  5. Juhl, Andreas, "On the recursive structure of Branson’s Q-curvature", arXiv preprint arXiv:1004.1784 
  6. Juhl, Andreas (2013), "Explicit formulas for GJMS-operators and Q-curvatures", Geometric and Functional Analysis 23: 1278--1370 
  7. Fefferman, Charles; Graham, C (2013), "Juhl’s formulae for GJMS operators and 𝑄-curvatures", Journal of the American Mathematical Society 26: 1191--1207 
  8. 8.0 8.1 Graham, C Robin; Zworski, Maciej (2003), "Scattering matrix in conformal geometry", Inventiones mathematicae 152: 89--118 
  9. 9.0 9.1 Chang, Sun-Yung Alice; González, Maria del Mar (2011), "Fractional Laplacian in conformal geometry", Advances in Mathematics 226: 1410--1432 
  10. Caffarelli, Luis; Silvestre, Luis (2007), "An extension problem related to the fractional Laplacian", Communications in Partial Differential Equations 32: 1245--1260 
  11. Branson, Thomas P (1987), "Group representations arising from Lorentz conformal geometry", Journal of functional analysis 74: 199--291