Hölder estimates and Fractional Laplacian: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Luis
No edit summary
 
imported>Xavi
 
Line 1: Line 1:
Hölder continuity of the solutions can sometimes be proved only from ellipticity
The fractional Laplacian $(-\Delta)^s$ is a classical operator which gives the standard Laplacian when $s=1$. One can think of $-(-\Delta)^s$ as the most basic  [[elliptic linear integro-differential operator]] of order $2s$ and can be defined in several equivalent ways (listed below). A range of powers of particular interest is $s \in (0,1)$, in which case for $u \in \mathcal{S}(\mathbb{R}^n)$ we can write the operator as
assumptions on the equation, without depending on smoothness of the
coefficients. This allows great flexibility in terms of applications of the
result. The corresponding result for elliptic equations of second order is the
[[Krylov-Safonov]] theorem in the non-divergence form, or the [[De Giorgi-Nash-Moser theorem]] in the divergence form.


The Hölder estimates are closely related to the [[Harnack inequality]]. In most cases, one can deduce the Hölder estimates from the Harnack inequality. However, there are simple example of integro-differential equations for which the Hölder estimates hold and the Harnack inequality does not <ref name="rang2013h" /> <ref name="bogdan2005harnack" />.
\[-(-\Delta)^su(x) = c_{n,s} \int_{\mathbb{R}^d}\frac{\delta u (x,y) }{|y|^{d+2s}}dy\]


There are integro-differential versions of both [[De Giorgi-Nash-Moser theorem]]
where $c_{n,s}$ is a universal constant and $\delta u(x,y):= u(x+y)+u(x-y)-2u(x)$. This particular expression shows that in this range of $s$ the operator enjoys the following monotonicity property: if $u$ has a global maximum at $x$, then $(-\Delta)^s u(x) \geq 0$, with equality only if $u$ is constant. From this monotonicity, a [[comparison principle]] can be derived for equations involving the fractional Laplacian.
and [[Krylov-Safonov theorem]]. The former uses variational techniques and is
stated in terms of Dirichlet forms. The latter is based on comparison
principles.


A Hölder estimate says that a solution to an integro-differential equation with rough coefficients
== Definitions ==
$L_x u(x) = f(x)$ in $B_1$, is $C^\alpha$ in $B_{1/2}$ for some $\alpha>0$
(small). It is very important when an estimate allows for a very rough dependence of
$L_x$ with respect to $x$, since the result then applies to the linearization of
(fully) nonlinear equations without any extra a priori estimate. On the other
hand, the linearization of a [[fully nonlinear integro-differential equation]] (for example the [[Isaacs equation]] or the [[Bellman equation]]) would inherit the initial assumptions regarding for the kernels with
respect to $y$. Therefore, smoothness (or even structural) assumptions for the
kernels with respect to $y$ can be made keeping such result applicable.


In the non variational setting the integro-differential operators $L_x$ are
All the definitions below are equivalent.
assumed to belong to some family, but no continuity is assumed for its
dependence with respect to $x$. Typically, $L_x u(x)$ has the form
$$ L_x u(x) = a_{ij}(x) \partial_{ij} u + b(x) \cdot \nabla u + \int_{\R^n} (u(x+y) - u(x) - y \cdot \nabla u(x) \, \chi_{B_1}(y))
K(x,y) \, dy$$
Within the context of nonlocal equations, we would be interested on a regularization effect caused by the integral term and not the second order part of the equation. Because o that, the coefficients $a_{ij}(x)$ are usually zero.


Since [[linear integro-differential operators]] allow for a great flexibility of
=== As a pseudo-differential operator ===
equations, there are several variations on the result: different assumptions on
The fractional Laplacian is the pseudo-differential operator with symbol $|\xi|^{2s}$. In other words, the following formula holds
the kernels, mixed local terms, evolution equations, etc. The linear equation
\[ \widehat{(-\Delta)^s f}(\xi) = |\xi|^{2s} \hat f(\xi).\]
with rough coefficients is equivalent to the function $u$ satisfying two
for any function (or tempered distribution) for which the right hand side makes sense.
inequalities for the [[extremal operators]] corresponding to the family of
operators $L$, which stresses the nonlinear character of the estimates.


As with other estimates in this field too, some Hölder estimates blow up as the
This formula is the simplest to understand and it is useful for problems in the whole space. On the other hand, it is hard to obtain local estimates from it.
order of the equation converges to two, and others pass to the limit. The
blow-up is a matter of the techniques used in the proof. Only estimates which
are robust are a true generalization of either the [[De Giorgi-Nash-Moser theorem]] or
[[Krylov-Safonov theorem]].  


== The general statement ==
=== From functional calculus ===
Since the operator $-\Delta$ is a self-adjoint positive definite operator in a dense subset $D$ of $L^2(\R^n)$, one can define $F(-\Delta)$ for any continuous function $F:\R^+ \to \R$. In particular, this serves as a more or less abstract definition of $(-\Delta)^s$.


=== Elliptic form ===
This definition is not as useful for practical applications, since it does not provide any explicit formula.
The general form of the Hölder estimates for an elliptic problem say that if we have an equation which holds in a domain, and the solution is globally bounded, then the solution is Hölder continuous in the interior of the domain. Typically this is stated in the following form: if $u : \R^d \to \R$ solves
\[
L(u,x) = 0 \ \ \text{in } B_1,
\]
and $u \in L^\infty(\R^d)$, then for some small $\alpha > 0$,
\[ \|u\|_{C^\alpha(B_{1/2})} \leq C \|u\|_{L^\infty(\R^d)}.\]


There is no lack of generality in assuming that $L$ is a '''linear''' integro-differential operator, provided that there is no regularity assumption on its $x$ dependence.
=== As a singular integral ===
If $f$ is regular enough and $s \in (0,1)$, $(-\Delta)^s f(x)$ can be computed by the formula
\[ (-\Delta)^s f(x) = c_{n,s} \int_{\R^n} \frac{f(x) - f(y)} {|x-y|^{n+2s}} \mathrm d y .\]


For non variational problems, in order to adapt the situation to the [[viscosity solution]] framework, the equation may be replaced by two inequalities.
Where $c_{n,s}$ is a constant depending on dimension and $s$.
\begin{align*}
M^+u \geq 0 \ \ \text{in } B_1, \\
M^-u \leq 0 \ \ \text{in } B_1.
\end{align*}
where $M^+$ and $M^-$ are [[extremal operators]] with respect to some class.


=== Parabolic form ===
This formula is the most useful to study local properties of equations involving the fractional Laplacian and regularity for critical semilinear problems.
The general form of the Hölder estimates for a parabolic problem is also an interior regularity statement for solutions of a parabolic equation. Typically this is stated in the following form: if $u : \R^d \times (-1,0] \to \R$ solves
\[
u_t - L(u,x) = 0 \ \ \text{in } (-1,0] \times B_1,
\]
and $u \in L^\infty(\R^d)$, then for some small $\alpha > 0$,
\[ \|u\|_{C^\alpha((-1/2,0] \times B_{1/2})} \leq C \|u\|_{L^\infty((-1,0] \times \R^d)}.\]


== List of results ==
=== As a generator of a [[Levy process]] ===
The operator can be defined as the generator of $\alpha$-stable Lévy processes. More precisely, if $X_t$ is the isotropic $\alpha$-stable Lévy process starting at zero and $f$ is a smooth function, then
\[ (-\Delta)^{\alpha/2} f(x) = \lim_{h \to 0^+} \frac 1 {h} \mathbb E [f(x) - f(x+X_h)]. \]


There are several Hölder estimates for elliptic and parabolic integro-differential equations which have been obtained. Here we list some of these results with a brief description of their main assumptions.
This definition is important for applications to probability.


=== Variational equations ===
== Inverse operator ==
A typical example of a symmetric nonlocal [[Dirichlet form]] is a bilinear form
The inverse of the $s$ power of the Laplacian is the $-s$ power of the Laplacian $(-\Delta)^{-s}$. For $0<s<n/2$, there is an integral formula which says that $(-\Delta)^{-s}u$ is the convolution of the function $u$ with the ''Riesz potential'':
$E(u,v)$ satisfying
\[ (-\Delta)^{-s} u(x) = C_{n,s} \int_{\R^n} u(x-y) \frac{1}{|y|^{n-2s}} \mathrm d y,\]
$$ E(u,v) = \iint_{\R^n \times \R^n} (v(y)-u(x))(v(y)-v(x)) K(x,y) \, dx
which holds as long as $u$ is regular enough for the right hand side to make sense.
\, dy $$
on the closure of all $L^2$-functions with respect to $J(u)=E(u,u)$. Note
that $K$ can be assumed to be symmetric because the skew-symmetric part
of $K$ would be ignored by the bilinear form.  


Minimizers of the corresponding quadratic forms satisfy the nonlocal Euler
== Heat kernel ==
equation  
The fractional heat kernel $p(t,x)$ is the fundamental solution to the [[fractional heat equation]]. It is the function which solves the equation
$$ \lim_{\varepsilon \to 0} \int_{|x-y|>\varepsilon} (u(y) - u(x) ) K(x,y) \, dy = 0,$$
\begin{align*}
which should be understood in the sense of distributions.
p(0,x) &= \delta_0 \\
p_t(t,x) + (-\Delta)^s p &= 0
\end{align*}


It is known that the gradient flow of a Dirichlet form (parabolic version of the
The kernel is easy to compute in Fourier side as $\hat p(t,\xi) = e^{-t|\xi|^{2s}}$. There is no explicit formula in physical variables, but the following inequalities are known to hold for some constant $C$
result) becomes instantaneously Hölder continuous <ref name="CCV"/>. The method
\[ C^{-1} \left( t^{-\frac n {2s}} \wedge \frac{t}{|x|^{n+2s}} \right) \leq p(t,x) \leq C \left( t^{-\frac n {2s}} \wedge \frac{t}{|x|^{n+2s}} \right). \]
of the proof builds an integro-differential version of the parabolic De Giorgi
technique that was developed for the study of critical [[Surface quasi-geostrophic equation]].


At some point in the original proof of De Giorgi, it is used that the
Moreover, the function $p$ is $C^\infty$ in $x$ for $t>0$ and the following identity follows by scaling
characteristic functions of a set of positive measure do not belong to $H^1$.
\[ p(t,x) = t^{-\frac n {2s}} p \left( 1 , t^{-\frac 1 {2s}} x \right). \]
Moreover, a quantitative estimate is required about the measure of
''intermediate'' level sets for $H^1$ functions. In the integro-differential
context, the required statement to carry out the proof would be the same with
the $H^{s/2}$ norm. This required statement is not true for $s$ small, and would
even require a non trivial proof for $s$ close to $2$. The difficulty is
bypassed though an argument that takes advantage of the nonlocal character of
the equation, and hence the estimate blows up as the order approaches two.


In the stationary case, it is known that minimizers of Dirichlet forms are
== Poisson kernel ==
Hölder continuous by adapting Moser's proof of [[De Giorgi-Nash-Moser theorem]] to the
Given a function $g : \R^n \setminus B_1 \to \R$, there exists a unique function $u$ which solves the Dirichlet problem
nonlocal setting <ref name="K"/>. In this result, the constants do not blow up as the order of the equation goes to two.
\begin{align*}
u(x) &= g(x) \qquad \text{if } x \notin B_1 \\
(-\Delta)^s u(x) &= 0 \qquad \text{if } x \in B_1.
\end{align*}


{{stub}}
The solution can be computed explicitly using the Poisson kernel
\[ u(x) = \int_{\R^n \setminus B_1} g(y) P(y,x) \mathrm d y,\]
where<ref name="R"/>
\[ P(y,x) = C_{n,s} \left( \frac{1-|x|^2}{|y|^2-1}\right)^s \frac 1 {|x-y|^n}.\]


=== Non variational equations ===
The justification of this Poisson kernel can be found in the classical book of Landkof (1.6.11')<ref name="L"/>.
The results below are nonlocal versions of [Krylov-Safonov theorem]. No regularity needs to be
assumed for $K$ with respect to $x$.


* The first result was obtained by Bass and Levin using probabilistic techniques.<ref
== Green's function for the ball ==
name="BL"/> It applies to elliptic integro-differential equations with symmetric and uniformly elliptic kernels (bounded pointwise). The constants obtained in the estimates are not uniform as the order of the equation goes to two. An extension of this result was obtained by Song and Vondracev <ref name="song2004" />.
For a function $g \in L^2(B_1)$, there exists a unique function $u \in H^s(\R^n)$ such that
\begin{align*}
u(x) &= 0 && \text{if } x \notin B_1 \\
(-\Delta)^s u &= g(x) && \text{if } x \in B_1.
\end{align*}


The estimate says the following. Assume a bounded function $u: \R^n \to \R$ solves
The solution is given explicitly using the Green's function,
$$ \int_{\R^n} (u(x+y) - u(x)) K(x,y) \mathrm{d}y = 0 \qquad \text{in } B_1, $$
\[ u(x) = \int_{B_1} G_{B_1}(x, y) g(y) \mathrm d y, \]
where $K$ satisfies
where<ref name="R"/>
\begin{equation} \label{pointwisebound}
\[ G_{B_1}(x, y) = C_{n,s} |x - y|^{2 s - n} \int_0^{r_0(x, y)} \frac{r^{s-1}}{(r+1)^{n/2}} \, \mathrm d r \]
\frac{\lambda}{|y|^{n+s}} \leq K(x,y) \leq \frac{\Lambda}{|y|^{n+s}} \qquad \text{for all } x,y \in B_1,
with
\end{equation}
\[ r_0(x, y) = \frac{(1 - |x|^2) (1 - |y|^2)}{|x - y|^2} . \]
where $s \in (0,2)$ and $\Lambda \geq \lambda > 0$ are given parameters. Then
The above formula holds for all $s \in (0, 1)$ also for $n = 1$.<ref name="BGR"/>
\[ \|u\|_{C^\alpha(B_{1/2})} \leq C \|u\|_{L^\infty(\R^n)}.\]


* A result by Bass and Kassmann also uses probabilistic techniques.<ref
== Regularity issues ==
name="BL"/> It applies to elliptic integro-differential equations with a rather general set of assumptions in the kernels. The main novelty is that the order of the equation may vary (continuously) from point to point. The constants obtained in the estimates are not uniform as the order of the equation goes to two.
Any function $u$ which satisfies $(-\Delta)^s u=0$ in any open set $\Omega$, then $u \in C^\infty$ inside $\Omega$. This follows from the smoothness of the Poisson kernel for balls.
* The first purely analytic proof was obtained by Luis Silvestre <ref
name="S"/>. The assumptions on the kernel are similar to those of Bass and Kassmann except that the order of the equation may change abruptly from point to point. The constants obtained in the estimates are not uniform as the order of the equation goes to two.
* The first estimate which remains uniform as the order of the equation goes to two was obtained by Caffarelli and Silvestre <ref name="CS"/>. The equations here are elliptic, with symmetric and uniformly elliptic kernels (pointwise bounded as in \ref{pointwisebound}).
* An estimate for parabolic equations of order one with a bounded drift was obtained by Silvestre <ref name="silvestre2011differentiability"/>. The equation here is parabolic, with symmetric and uniformly elliptic kernels (pointwise bounded as in \ref{pointwisebound}). The order of the equation is set to be one, but the proof also gives the estimate for any order greater than one, or also less than one if there is no drift. The constants in the estimates blow up as the order of the equation converges to two.
* Davila and Chang-Lara studied equations with nonsymmetric kernels, elliptic and parabolic. Their first result is for elliptic equations so that the odd part of the kernels is of lower order compared to their symmetric part <ref name="lara2012regularity" />. A later work provides estimates for parabolic equations which stay uniform as the order of the equation goes to two.<ref name="lara2014regularity" />. In a newer paper they improved both of their previous results by providing estimates for parabolic equations, with nonsymmetric kernels <ref name="chang2014h" />. For these three results,the kernels are required to be uniformly elliptic (pointwise bounded as in \ref{pointwisebound}).
* The first relaxation of the pointwise bound \eqref{pointwisebound} on the kernels was given by Bjorland, Caffarelli and Figalli <ref name="bjorland2012" /> for elliptic equations. They consider symmetric kernels which are bounded above everywhere, but are bounded below only in a cone of directions. A similar result is obtained by Kassmann, Rang and Schwab <ref name="rang2013h"/>.
* A generalization of all previous results was obtained by Schwab and Silvestre <ref name="schwab2014regularity" />. They consider parabolic equations. The estimates stay uniform as the order of the equation goes to two. The kernels are assumed to be bounded above only in average and bounded below only in sets of positive density. There is no symmetry assumption. It corresponds to the class of operators described [[Linear_integro-differential_operator#More singular/irregular kernels|here]].
* A non scale invariant family of kernels was studied by Kassmann and Mimica <ref name="kassmann2013intrinsic"/>. They study elliptic equations with symmetric kernels that satisfy pointwise bounds. However, the assumption is different from \eqref{pointwisebound} in the sense that $K(x,y)$ is required to be comparable to a function of $|y|$ which is not necessarily power-like.


== Other variants ==
=== Full space regularization of the Riesz potential ===
If $(-\Delta)^s u = f$ in $\R^n$, then of course $u = (-\Delta)^{-s}f$. It is simple to see that the operator $(-\Delta)^{-s}$ regularizes the functions ''up to $2s$ derivatives''. In Fourier side, $\hat u(\xi) = |\xi|^{-2s} \hat f(\xi)$, thus $\hat u$ has a stronger decay than $\hat f$. More precisely, if $f \in C^\alpha$, then $u \in C^{2s+\alpha}$ as long as $2s+\alpha$ is not an integer (A proof of this using only the integral representation of $(-\Delta)^{-s}$ was given in the preliminaries section of <ref name="S"/>, but the result is presumably very classical). More generally, if $f$ belongs to the Besov space $B_{p,q}^r$, then $u \in B_{p,q}^{r+2s}$, $s>0$. However, if $f$ belongs to $L^p$ then it does not follow that $u\in W^{2s,p}$; this is true only for $p\geq2$. For $1<p<2$ one only have $u\in B^{2s}_{p,2}\supset W^{2s,p}$<ref name="Stein"/>.


* There are Holder estimates for equations in divergence form that are non local in time <ref name="zacher2013" />
=== Boundary regularity ===
* If we allow for continuous dependence on the coefficients with respect to $x$, there are Hölder estimates for a very general class of integral equations <ref name="barles2011" />.
From the Poisson formula, one can observe that if the boundary data $g$ of the Dirichlet problem in $B_1$ is bounded and smooth, then $u \in C^s(\overline B_1)$ and in general no better. The singularity of $u$ occurs only on $\partial B_1$, the solution $u$ would be $C^\infty$ in the interior of the unit ball (which is also a consequence of the explicit Poisson kernel).


Related to this, consider the solution $u$ to the Dirichlet problem $(-\Delta)^s u =g$ in $\Omega$, $u=0$ in $\mathbb R^n \setminus \Omega$, with $g$ bounded. In $C^{1,1}$ domains $u\in C^s(\overline \Omega)$ and $u/\delta^s\in C^\alpha(\overline\Omega)$, where $\delta(x)= {\rm dist}(x,\partial\Omega)$ <ref name="RS"/>.


== References ==
== References ==
{{reflist|refs=
{{reflist|refs=
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Hölder
<ref name="BGR">{{Citation | last1=Blumenthal | first1=R. M. | last2=Getoor | first2=R. K. | last3=Ray | first3=D. B. | title=On the distribution of first hits for the symmetric stable processes | url=http://www.jstor.org/stable/1993561 | year=1961 | journal=Trans. Amer. Math. Soc. | issn=0002-9947 | volume=99 | pages=540–554}}</ref>
estimates for solutions of integro-differential equations like the fractional
<ref name="L">{{Citation | last1=Landkof | first1=N. S. | title=Foundations of modern potential theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=1972}}</ref>
Laplace | url=http://dx.doi.org/10.1512/iumj.2006.55.2706 |
<ref name="R">{{Citation | last1=Riesz | first1=M. | title=Intégrales de Riemann-Liouville et potentiels | url=http://acta.fyx.hu/acta/showCustomerArticle.action?id=5634&dataObjectType=article | year=1938 | journal=Acta Sci. Math. Szeged | issn=0001-6969 | volume=9 | issue=1 | pages=1–42}}</ref>
doi=10.1512/iumj.2006.55.2706 | year=2006 | journal=Indiana University
<ref name="S">{{Citation | last1=Silvestre | first1=Luis | title=Regularity of the obstacle problem for a fractional power of the Laplace operator | url=http://dx.doi.org/10.1002/cpa.20153 | doi=10.1002/cpa.20153 | year=2007 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=60 | issue=1 | pages=67–112}}</ref>
Mathematics Journal | issn=0022-2518 | volume=55 | issue=3 |
<ref name="RS">{{Citation | last1=Ros-Oton | first1=X. | last2=Serra | first2=J. | title=The Dirichlet problem for the fractional Laplacian: regularity up to the boundary | url=http://arxiv.org/abs/1207.5985 | year=2012 | journal=[[J. Math. Pures Appl.]] | pages=to appear }}</ref>
pages=1155–1174}}</ref>
<ref name="Stein">{{Citation | last1=Stein | first1=E. | title=Singular Integrals And Di�erentiability Properties Of Functions | publisher=[[Princeton Mathematical Series]] | year=1970}}</ref>
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre |
first2=Luis | title=Regularity theory for fully nonlinear integro-differential
equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 |
year=2009 | journal=[[Communications on Pure and Applied Mathematics]] |
issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
<ref name="CCV">{{Citation | last1=Caffarelli | first1=Luis | last2=Chan |
first2=Chi Hin | last3=Vasseur | first3=Alexis | title= |
doi=10.1090/S0894-0347-2011-00698-X | year=2011 | journal=[[Journal of the
American Mathematical Society]] | issn=0894-0347 | issue=24 |
pages=849–869}}</ref>
<ref name="K">{{Citation | last1=Kassmann | first1=Moritz | title=A priori
estimates for integro-differential operators with measurable kernels |
url=http://dx.doi.org/10.1007/s00526-008-0173-6 | doi=10.1007/s00526-008-0173-6
| year=2009 | journal=Calculus of Variations and Partial Differential Equations
| issn=0944-2669 | volume=34 | issue=1 | pages=1–21}}</ref>
<ref name="BK">{{Citation | last1=Bass | first1=Richard F. | last2=Kassmann |
first2=Moritz | title=Hölder continuity of harmonic functions with respect to
operators of variable order | url=http://dx.doi.org/10.1080/03605300500257677 |
doi=10.1080/03605300500257677 | year=2005 | journal=Communications in Partial
Differential Equations | issn=0360-5302 | volume=30 | issue=7 |
pages=1249–1259}}</ref>
<ref name="BL">{{Citation | last1=Bass | first1=Richard F. | last2=Levin |
first2=David A. | title=Harnack inequalities for jump processes |
url=http://dx.doi.org/10.1023/A:1016378210944 | doi=10.1023/A:1016378210944 |
year=2002 | journal=Potential Analysis. An International Journal Devoted to the
Interactions between Potential Theory, Probability Theory, Geometry and
Functional Analysis | issn=0926-2601 | volume=17 | issue=4 |
pages=375–388}}</ref>
<ref name="lara2011regularity">{{Citation | last1=Lara | first1= Héctor Chang | last2=Dávila | first2= Gonzalo | title=Regularity for solutions of non local parabolic equations | journal=Calculus of Variations and Partial Differential Equations | year=2011 | pages=1--34}}</ref>
<ref name="zacher2013">{{Citation | last1=Zacher | first1= Rico | title=A De Giorgi--Nash type theorem for time fractional diffusion equations | url=http://dx.doi.org/10.1007/s00208-012-0834-9 | journal=Math. Ann. | issn=0025-5831 | year=2013 | volume=356 | pages=99--146 | doi=10.1007/s00208-012-0834-9}}</ref>
<ref name="barles2011">{{Citation | last1=Barles | first1= Guy | last2=Chasseigne | first2= Emmanuel | last3=Imbert | first3= Cyril | title=H\"older continuity of solutions of second-order non-linear elliptic integro-differential equations | url=http://dx.doi.org/10.4171/JEMS/242 | journal=J. Eur. Math. Soc. (JEMS) | issn=1435-9855 | year=2011 | volume=13 | pages=1--26 | doi=10.4171/JEMS/242}}</ref>
<ref name="rang2013h">{{Citation | last1=Rang | first1= Marcus | last2=Kassmann | first2= Moritz | last3=Schwab | first3= Russell W | title=H$\backslash$" older Regularity For Integro-Differential Equations With Nonlinear Directional Dependence | journal=arXiv preprint arXiv:1306.0082}}</ref>
<ref name="bogdan2005harnack">{{Citation | last1=Bogdan | first1= Krzysztof | last2=Sztonyk | first2= Pawe\l | title=Harnack’s inequality for stable Lévy processes | journal=Potential Analysis | year=2005 | volume=22 | pages=133--150}}</ref>
<ref name="schwab2014regularity">{{Citation | last1=Schwab | first1= Russell W | last2=Silvestre | first2= Luis | title=Regularity for parabolic integro-differential equations with very irregular kernels | journal=arXiv preprint arXiv:1412.3790}}</ref>
<ref name="kassmann2013intrinsic">{{Citation | last1=Kassmann | first1= Moritz | last2=Mimica | first2= Ante | title=Intrinsic scaling properties for nonlocal operators | journal=arXiv preprint arXiv:1310.5371}}</ref>
<ref name="song2004">{{Citation | last1=Song | first1= Renming | last2=Vondra\vcek | first2= Zoran | title=Harnack inequality for some classes of Markov processes | url=http://dx.doi.org/10.1007/s00209-003-0594-z | journal=Math. Z. | issn=0025-5874 | year=2004 | volume=246 | pages=177--202 | doi=10.1007/s00209-003-0594-z}}</ref>
<ref name="silvestre2011differentiability">{{Citation | last1=Silvestre | first1= Luis | title=On the differentiability of the solution to the Hamilton--Jacobi equation with critical fractional diffusion | journal=Advances in mathematics | year=2011 | volume=226 | pages=2020--2039}}</ref>
<ref name="lara2012regularity">{{Citation | last1=Lara | first1= Héctor Chang | last2=Dávila | first2= Gonzalo | title=Regularity for solutions of nonlocal, nonsymmetric equations | year=2012 | volume=29 | pages=833--859}}</ref>
<ref name="chang2014h">{{Citation | last1=Chang-Lara | first1= Hector | last2=Davila | first2= Gonzalo | title=H$\backslash$" older estimates for non-local parabolic equations with critical drift | journal=arXiv preprint arXiv:1408.0676}}</ref>
<ref name="lara2014regularity">{{Citation | last1=Lara | first1= Héctor Chang | last2=Dávila | first2= Gonzalo | title=Regularity for solutions of non local parabolic equations | journal=Calculus of Variations and Partial Differential Equations | year=2014 | volume=49 | pages=139--172}}</ref>
<ref name="bjorland2012">{{Citation | last1=Bjorland | first1= C. | last2=Caffarelli | first2= L. | last3=Figalli | first3= A. | title=Non-local gradient dependent operators | url=http://dx.doi.org/10.1016/j.aim.2012.03.032 | journal=Adv. Math. | issn=0001-8708 | year=2012 | volume=230 | pages=1859--1894 | doi=10.1016/j.aim.2012.03.032}}</ref>
}}
}}

Revision as of 16:10, 19 May 2013

The fractional Laplacian $(-\Delta)^s$ is a classical operator which gives the standard Laplacian when $s=1$. One can think of $-(-\Delta)^s$ as the most basic elliptic linear integro-differential operator of order $2s$ and can be defined in several equivalent ways (listed below). A range of powers of particular interest is $s \in (0,1)$, in which case for $u \in \mathcal{S}(\mathbb{R}^n)$ we can write the operator as

\[-(-\Delta)^su(x) = c_{n,s} \int_{\mathbb{R}^d}\frac{\delta u (x,y) }{|y|^{d+2s}}dy\]

where $c_{n,s}$ is a universal constant and $\delta u(x,y):= u(x+y)+u(x-y)-2u(x)$. This particular expression shows that in this range of $s$ the operator enjoys the following monotonicity property: if $u$ has a global maximum at $x$, then $(-\Delta)^s u(x) \geq 0$, with equality only if $u$ is constant. From this monotonicity, a comparison principle can be derived for equations involving the fractional Laplacian.

Definitions

All the definitions below are equivalent.

As a pseudo-differential operator

The fractional Laplacian is the pseudo-differential operator with symbol $|\xi|^{2s}$. In other words, the following formula holds \[ \widehat{(-\Delta)^s f}(\xi) = |\xi|^{2s} \hat f(\xi).\] for any function (or tempered distribution) for which the right hand side makes sense.

This formula is the simplest to understand and it is useful for problems in the whole space. On the other hand, it is hard to obtain local estimates from it.

From functional calculus

Since the operator $-\Delta$ is a self-adjoint positive definite operator in a dense subset $D$ of $L^2(\R^n)$, one can define $F(-\Delta)$ for any continuous function $F:\R^+ \to \R$. In particular, this serves as a more or less abstract definition of $(-\Delta)^s$.

This definition is not as useful for practical applications, since it does not provide any explicit formula.

As a singular integral

If $f$ is regular enough and $s \in (0,1)$, $(-\Delta)^s f(x)$ can be computed by the formula \[ (-\Delta)^s f(x) = c_{n,s} \int_{\R^n} \frac{f(x) - f(y)} {|x-y|^{n+2s}} \mathrm d y .\]

Where $c_{n,s}$ is a constant depending on dimension and $s$.

This formula is the most useful to study local properties of equations involving the fractional Laplacian and regularity for critical semilinear problems.

As a generator of a Levy process

The operator can be defined as the generator of $\alpha$-stable Lévy processes. More precisely, if $X_t$ is the isotropic $\alpha$-stable Lévy process starting at zero and $f$ is a smooth function, then \[ (-\Delta)^{\alpha/2} f(x) = \lim_{h \to 0^+} \frac 1 {h} \mathbb E [f(x) - f(x+X_h)]. \]

This definition is important for applications to probability.

Inverse operator

The inverse of the $s$ power of the Laplacian is the $-s$ power of the Laplacian $(-\Delta)^{-s}$. For $0<s<n/2$, there is an integral formula which says that $(-\Delta)^{-s}u$ is the convolution of the function $u$ with the Riesz potential: \[ (-\Delta)^{-s} u(x) = C_{n,s} \int_{\R^n} u(x-y) \frac{1}{|y|^{n-2s}} \mathrm d y,\] which holds as long as $u$ is regular enough for the right hand side to make sense.

Heat kernel

The fractional heat kernel $p(t,x)$ is the fundamental solution to the fractional heat equation. It is the function which solves the equation \begin{align*} p(0,x) &= \delta_0 \\ p_t(t,x) + (-\Delta)^s p &= 0 \end{align*}

The kernel is easy to compute in Fourier side as $\hat p(t,\xi) = e^{-t|\xi|^{2s}}$. There is no explicit formula in physical variables, but the following inequalities are known to hold for some constant $C$ \[ C^{-1} \left( t^{-\frac n {2s}} \wedge \frac{t}{|x|^{n+2s}} \right) \leq p(t,x) \leq C \left( t^{-\frac n {2s}} \wedge \frac{t}{|x|^{n+2s}} \right). \]

Moreover, the function $p$ is $C^\infty$ in $x$ for $t>0$ and the following identity follows by scaling \[ p(t,x) = t^{-\frac n {2s}} p \left( 1 , t^{-\frac 1 {2s}} x \right). \]

Poisson kernel

Given a function $g : \R^n \setminus B_1 \to \R$, there exists a unique function $u$ which solves the Dirichlet problem \begin{align*} u(x) &= g(x) \qquad \text{if } x \notin B_1 \\ (-\Delta)^s u(x) &= 0 \qquad \text{if } x \in B_1. \end{align*}

The solution can be computed explicitly using the Poisson kernel \[ u(x) = \int_{\R^n \setminus B_1} g(y) P(y,x) \mathrm d y,\] where[1] \[ P(y,x) = C_{n,s} \left( \frac{1-|x|^2}{|y|^2-1}\right)^s \frac 1 {|x-y|^n}.\]

The justification of this Poisson kernel can be found in the classical book of Landkof (1.6.11')[2].

Green's function for the ball

For a function $g \in L^2(B_1)$, there exists a unique function $u \in H^s(\R^n)$ such that \begin{align*} u(x) &= 0 && \text{if } x \notin B_1 \\ (-\Delta)^s u &= g(x) && \text{if } x \in B_1. \end{align*}

The solution is given explicitly using the Green's function, \[ u(x) = \int_{B_1} G_{B_1}(x, y) g(y) \mathrm d y, \] where[1] \[ G_{B_1}(x, y) = C_{n,s} |x - y|^{2 s - n} \int_0^{r_0(x, y)} \frac{r^{s-1}}{(r+1)^{n/2}} \, \mathrm d r \] with \[ r_0(x, y) = \frac{(1 - |x|^2) (1 - |y|^2)}{|x - y|^2} . \] The above formula holds for all $s \in (0, 1)$ also for $n = 1$.[3]

Regularity issues

Any function $u$ which satisfies $(-\Delta)^s u=0$ in any open set $\Omega$, then $u \in C^\infty$ inside $\Omega$. This follows from the smoothness of the Poisson kernel for balls.

Full space regularization of the Riesz potential

If $(-\Delta)^s u = f$ in $\R^n$, then of course $u = (-\Delta)^{-s}f$. It is simple to see that the operator $(-\Delta)^{-s}$ regularizes the functions up to $2s$ derivatives. In Fourier side, $\hat u(\xi) = |\xi|^{-2s} \hat f(\xi)$, thus $\hat u$ has a stronger decay than $\hat f$. More precisely, if $f \in C^\alpha$, then $u \in C^{2s+\alpha}$ as long as $2s+\alpha$ is not an integer (A proof of this using only the integral representation of $(-\Delta)^{-s}$ was given in the preliminaries section of [4], but the result is presumably very classical). More generally, if $f$ belongs to the Besov space $B_{p,q}^r$, then $u \in B_{p,q}^{r+2s}$, $s>0$. However, if $f$ belongs to $L^p$ then it does not follow that $u\in W^{2s,p}$; this is true only for $p\geq2$. For $1<p<2$ one only have $u\in B^{2s}_{p,2}\supset W^{2s,p}$[5].

Boundary regularity

From the Poisson formula, one can observe that if the boundary data $g$ of the Dirichlet problem in $B_1$ is bounded and smooth, then $u \in C^s(\overline B_1)$ and in general no better. The singularity of $u$ occurs only on $\partial B_1$, the solution $u$ would be $C^\infty$ in the interior of the unit ball (which is also a consequence of the explicit Poisson kernel).

Related to this, consider the solution $u$ to the Dirichlet problem $(-\Delta)^s u =g$ in $\Omega$, $u=0$ in $\mathbb R^n \setminus \Omega$, with $g$ bounded. In $C^{1,1}$ domains $u\in C^s(\overline \Omega)$ and $u/\delta^s\in C^\alpha(\overline\Omega)$, where $\delta(x)= {\rm dist}(x,\partial\Omega)$ [6].

References

  1. 1.0 1.1 Riesz, M. (1938), "Intégrales de Riemann-Liouville et potentiels", Acta Sci. Math. Szeged 9 (1): 1–42, ISSN 0001-6969, http://acta.fyx.hu/acta/showCustomerArticle.action?id=5634&dataObjectType=article 
  2. Landkof, N. S. (1972), Foundations of modern potential theory, Berlin, New York: Springer-Verlag 
  3. Blumenthal, R. M.; Getoor, R. K.; Ray, D. B. (1961), "On the distribution of first hits for the symmetric stable processes", Trans. Amer. Math. Soc. 99: 540–554, ISSN 0002-9947, http://www.jstor.org/stable/1993561 
  4. Silvestre, Luis (2007), "Regularity of the obstacle problem for a fractional power of the Laplace operator", Communications on Pure and Applied Mathematics 60 (1): 67–112, doi:10.1002/cpa.20153, ISSN 0010-3640, http://dx.doi.org/10.1002/cpa.20153 
  5. Stein, E. (1970), Singular Integrals And Di�erentiability Properties Of Functions, Princeton Mathematical Series 
  6. Ros-Oton, X.; Serra, J. (2012), "The Dirichlet problem for the fractional Laplacian: regularity up to the boundary", J. Math. Pures Appl.: to appear, http://arxiv.org/abs/1207.5985