00-20 V. Bruneau, V. Petkov
Semiclassical resolvent estimates for trapping perturbations (62K, LaTeX 2e) Jan 14, 00
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We study the semiclassical estimates of the resolvent $R(\lambda + i\tau),\:\:\lambda \in J \subset\subset{\RR}^{+},\: \tau \in ]0,1]$ of a self-adjoint operator $L(h)$ in the space of bounded operators ${\cal L}({\cal H}^{0,s},{\cal H}^{0,-s}),\:s > 1/2$. In the general case of long-range trapping "black-box" perturbations we prove that the estimate of the cut-off resolvent $\|\chi(x)R(\lambda + i0)\chi(x)\|_{{\cal H} \to {\cal H}} \leq C\exp(Ch^{-p}),\:\chi(x) \in C^{\infty}_0({\RR^n}),\:p \geq 1$ implies the estimate $\|R(\lambda + i\tau)\|_{s,-s} \leq C_1\exp(C_1 h^{-p})$.

Files: 00-20.src( 00-20.keywords , ResEst.tex )