04-276 Artur Avila, David Damanik
Generic Singular Spectrum For Ergodic Schr\"odinger Operators (20K, LaTeX) Sep 7, 04
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We consider Schr\"odinger operators with ergodic potential $V_\omega(n)=f(T^n(\omega))$, $n \in \Z$, $\omega \in \Omega$, where $T:\Omega \to \Omega$ is a non-periodic homeomorphism. We show that for generic $f \in C(\Omega)$, the spectrum has no absolutely continuous component. The proof is based on approximation by discontinuous potentials which can be treated via Kotani Theory.

Files: 04-276.src( 04-276.keywords , Avila_Damanik.TEX )