05-113 Barry Simon
Jost Functions and Jost Solutions for Jacobi Matrices, III. Asymptotic Series for Decay and Meromorphicity (281K, PDF) Mar 18, 05
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We show that the parameters $a_n, b_n$ of a Jacobi matrix have a complete asymptotic series \begin{align*} a_n^2 -1 &= \sum_{k=1}^{K(R)} p_k(n) \mu_k^{-2n} + O(R^{-2n}) \\ b_n &= \sum_{k=1}^{K(R)} p_k(n) \mu_k^{-2n+1} + O(R^{-2n}) \end{align*} where $1 < |\mu_j| < R$ for $j\leq K(R)$ and all $R$ if and only if the Jost function, $u$, written in terms of $z$ (where $E=z+z^{-1}$) is an entire meromorphic function. We relate the poles of $u$ to the $\mu_j$'s.

Files: 05-113.src( 05-113.keywords , Simon_305.pdf.mm )